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Abstract

Many boundaries impede the flow of authorization
information, forcing applications that span those
boundaries into hop-by-hop approaches to autho-
rization. We present a unified approach to autho-
rization. Our approach allows applications that span
administrative, network, abstraction, and protocol
boundaries to understand the end-to-end authority
that justifies any given request. The resulting dis-
tributed systems are more secure and easier to audit.

We describe boundaries that can interfere with
end-to-end authorization, and outline our unified ap-
proach. We describe the system we built and the
applications we adapted to use our unified autho-
rization system, and measure its costs. We conclude
that our system is a practical approach to the desir-
able goal of end-to-end authorization.

1 Introduction

As systems grow more complex, they are often grown
by affixing one system to another using some form of
gateway to bridge boundaries between the systems.
The boundaries can take several forms; we discuss
four in this paper.

When we assemble systems in this way, frequently
the authorization information available at the client
system cannot be translated to the terms of autho-
rization at the server system. As a result, the gate-
way often ends up making access-control decisions
on behalf of the server system, and the server sys-
tem is ignorant of any authorization information be-
yond a blind trust in the gateway. Our end-to-end
authorization system remedies this situation.

2 Goals

Saltzer et al. describe a general principle for com-
puter engineering: implement end-to-end semantics
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to achieve correctness, and only implement hop-by-
hop semantics to boost the performance of the end-
to-end implementation [19]. Voydock and Kent ar-
gue for end-to-end security measures when the hops
are between network routers [24]. The same prin-
ciple applies to authorization semantics when the
hops are between gateways that span administra-
tive boundaries, network scales, levels of abstraction,
or protocol boundaries. End-to-end authorization
makes systems more secure by reducing the number
of programs that make access-control decisions, by
giving those programs that do control access more
thorough information, and by providing more useful
audit trails. In this section, we illustrate four kinds
of boundaries in distributed systems that impede the
flow of authorization information from one end of a
system to another. We discuss how, by giving clients
and servers the ability to form and verify proofs, our
unified system can support end-to-end authorization
through the gateways that span these boundaries.

2.1 Spanning administrative domains

Administrative boundaries frequently interfere with
end-to-end authorization. The conventional ap-
proach to authorization involves authenticating the
client to a local, administratively-defined user iden-
tity, then authorizing that user according to an
access-control list (ACL) for the resource. When
resources are to be shared across administrative
boundaries, this scheme fails because the server has
no local knowledge of the recipient’s identity.

Typical solutions to this problem involve authenti-
cating the remote user in the local domain, either by
having the local administrator create a new account,
or by the resource owner sharing her password. An-
other approach is to install a gateway that accesses
the resource with the local user’s privilege but on
behalf of the remote user. With the gateway the
owner achieves her goal of sharing, but obscures the
identity and authority of the actual client from the
service that supplies the underlying resource.

Another way a user might share resources across
administrative boundaries is by delegating1 her au-
thority with restriction. In the example, Alice may

1We call delegation what Abadi et al. call handoff.



authorize Bob to perform some restricted set of ac-
tions on certain resources. Authority information
flows across the administrative boundary: the del-
egation provides the resource server with sufficient
information to reason about the client regardless of
her membership in the local administrative domain.
Indeed, the authorization mechanism has no inher-
ent notion of administrative domain.

2.2 Spanning network scales

A second boundary that interferes with end-to-end
authorization is network scale. Network scale affects
an application’s choice of hop-by-hop authorization
protocol. For example, a strong encryption protocol
is appropriate when crossing a wide-area network.
Inside a firewall where routers are locally adminis-
tered, some installations may base authority deci-
sions on IP source addresses. On a local machine,
we can often trust the OS kernel to correctly identify
the participants in an interprocess communication.

Our unified approach separates policy from mech-
anism, creating two benefits. First, applications rea-
son about policy using a toolkit with a narrow inter-
face. The toolkit can transparently support multi-
ple access mechanisms, and simply enable those that
policy allows. Second, when an application does not
support a desired mechanism, we can build a gate-
way that forwards requests from another mechanism
while still passing end-to-end authorization informa-
tion in a form the server understands and verifies.
Ultimately, the high-level security analysis of a pro-
gram is independent of mechanism, and reflects end-
to-end trust relationships.

2.3 Spanning levels of abstraction

Another use for gateway programs is to introduce
another level of abstraction over that provided by
a lower-level resource server. A file system takes
disk blocks and makes files; a calendar takes rela-
tional database records and makes events; a source-
code repository takes files and makes configuration
branches. Typically, an abstracting gateway con-
trols the lower-level resource completely and exclu-
sively, so that the gateway makes all access-control
decisions. With end-to-end authorization, one can
instead allow multiple mutually untrusting gateways
to share a single lower-level resource.

For example, a system administrator might con-
trol the disk-block allocator. To grant Alice access
to a specific file X, the sysadmin may allow Alice
to speak for the file system regarding X, and allow
the conjunction of Alice and the file system quoting
Alice to speak for the disk blocks. In this configu-
ration, the file system cannot access the lower-level

disk block resource without Alice’s agreement (due
to the conjunction), and Alice cannot meddle with
arbitrary disk blocks without the file system agree-
ing that the requests are appropriate. The system
helps us adhere to the principal of least privilege by
encoding partial trust in the user and in the file sys-
tem program. Furthermore, auditing any request for
disk blocks provides end-to-end information indicat-
ing the involvement of both Alice and the file system
program.

2.4 Spanning protocols

Commonly a gateway is installed between two sys-
tems simply to translate requests from one wire pro-
tocol to another. Like any gateway, these gateways
often impede the flow of authorization information
from client to server.

In our system, authorization information is en-
coded in a data structure that has both robust and
efficient wire transfer encodings [18]. Thus the uni-
fied system is easily adapted for transfer over a va-
riety of existing protocols. In this paper, we de-
scribe its implementation over HTTP and over Java
Remote Method Invocation (RMI). Adapting more
protocols, such as NFS and SMTP, to support uni-
fied authorization will result in wider applicability
of end-to-end authorization.

The four boundaries described above turn up in
real systems that accrete from smaller subsystems.
Gateway software installed at each boundary maps
requests from clients on one side of the boundary
to requests for services on the other side. The sys-
tem described herein allows us, at each boundary, to
preserve the flow of authorization information along-
side the flow of requests. By allowing gateways to
defer authorization decisions to the final resource
server when appropriate, and ensuring that resource
servers have a full explanation for the authority of
the requests they service, we provide applications
with end-to-end authorization.

3 Unified authorization

Above, we motivate the use of a unified system
to support end-to-end authorization, and allude to
some of its features. In this section, we give an
overview of the system we built, part of a project
called Snowflake that facilitates naming and sharing
across administrative boundaries.

The main idea behind our end-to-end authoriza-
tion is a compact logic of authority. The logic is
founded in a possible-worlds semantics that provides



intuition and guidance about possible extensions.
Due to its length, the detailed semantics appears
in a companion paper [11].

Logical assumptions represent statements that a
principal believes based on some verification (out-
side the logic), such as the result of a digital sig-
nature verification. Principals combine assumptions
and logical theorems to produce inherently auditable
proofs of authority. Such proofs are not bearer capa-
bilities but simply verifiable facts: while they prove
that a given principal has authority, knowledge of
the proof by an adversary does not bestow author-
ity on the adversary. The primary form of statement

is B
T
⇒ A, read “Bob speaks for Alice regarding the

statements in set T .” The statement means that Al-
ice agrees with Bob about any statement in T that
Bob might make; the speaks for captures delegation,
and the regarding captures restriction.

The logic stems from the Logic of Authentica-
tion due to Abadi, Burrows, Lampson, Plotkin, and
Wobber [1, 13, 25]; as in their logic, ours can en-
code conjunction (multiple parties exercising joint
authority) and quoting (one party claiming to speak
on behalf of another). The logic is backed by a se-
mantics that not only provides unambiguous mean-
ing for every logical statement, but tells us how the
system may and may not be safely extended.

The formalism suggests a natural implementation
language that fits nicely with the Simple Public Key
Infrastructure (SPKI) [9]. Our system generalizes
SPKI by allowing other forms of principal, so that
the same framework can be used for authorization
on a single host using a trusted kernel, authorization
within an administrative domain using a secret-key
protocol, or authorization in the wide area using a
public key protocol. We extended the SPKI frame-
work rather than create our own to simplify poten-
tial interoperation with SPKI, to exploit SPKI’s un-
ambiguous S-expression representation, and to build
on existing implementations of SPKI in C and Java.

We present the implementation in three sections:
the infrastructure of the system, the channels of
communication we have supported, and some ap-
plications that exploit the authorization model.
The applications culminate in a configuration that
bridges each of the four boundaries described above.

Principals, statements and proofs are the language
of our system. Section 4 describes each, and dis-
cusses our implementation. It also describes the
Prover, a tool used by clients to generate proofs.
Requests to be authorized are delivered over various
kinds of channels, from fast local channels connected
by a trusted kernel, to cryptographically-protected
network connections. We discuss our implementa-
tion of authorization over channels in Section 5. In

Section 6, we describe the applications and services
we have built that participate in and interoperate
using the unified authorization system. We measure
and analyze the costs of our approach in Section 7.
Section 8 discusses related work, and we summarize
in Section 9.

4 Infrastructure

The basic elements of the system are statements and
principals. A statement is any assertion, such as “it
would be good to read file X,” or “Bob speaks for
Alice,” or “Charlie says Alice speaks for Charlie.”
A principal is any entity that can make a state-
ment. Examples include the binary representation
of a statement itself (that says only what it says), a
cryptographic key (that says any message signed by
the key), a secure channel (that says any message
emanating from the channel), a program (that says
its output), and a terminal (that says whatever the
user types on it).

A proof of authority, like a proof of a mathemati-
cal theorem, is simply a collection of statements that
together convince the reader of the veracity of the
conclusion statement. Of course, in an authoriza-
tion system, a proof is read by a program, not by a
mathematician.

4.1 Statements

Snowflake’s implementation of sharing begins with
the Java implementation of SPKI by Morcos [14].
It is a useful starting point because not only do we
wish to preserve features of SPKI, but SPKI includes
a precise and easily extensible specification of the
representation of various abstractions. Furthermore,
starting with a SPKI implementation offers an easier
path to SPKI interoperability.

The restriction imposed on a delegation is speci-
fied using authorization tags from SPKI. Authoriza-
tion tags concisely represent infinitely refinable sets,
which makes them an attractive format for user-
definable restrictions. We replaced Morcos’ minimal
implementation of authorization tags with a com-
plete one that performs arbitrary intersection oper-
ations [12, Chapter 6].Our semantics paper explains
how SPKI’s revocation mechanisms (lists and one-
time revalidations) can be expressed as statements
in our logic [11].

4.2 Principals

SPKI makes a distinction between principals and
“subjects,” entities that can speak for others but
can utter no statements directly, such as threshold



(conjunct) principals. Our formalism does not make
that distinction. It also supports new compound
principals, such as the quoting principal of Lampson
et al. Therefore, we extended Morcos’ Principal class
to support SPKI threshold (conjunction) principals
and Lampson’s quoting principals. When a service
reads a request from a communications channel, it
associates the request with an appropriate principal
object that represents the channel; this principal is
the one that “says” the request. Because the chan-
nel itself is a principal, it may claim to quote some
other principal; that assertion is noted by associ-
ating the channel with a Quoting principal object.
The object’s quoter field is the channel itself, and
its quotee field is the (possibly compound) principal
the channel claims to quote.

4.3 Proofs

We implemented a Proof class that represents a
structured proof consisting of axioms and theorems
of the logic and basic facts (delegations by princi-
pals). An instance of Proof describes the state-
ment that it proves and can verify itself upon re-
quest. While Proof objects may be received from
untrusted parties, their methods are loaded from a
local code base, so that the results of verification are
trustworthy. Servers receive from clients instances
of the Proof class that show the client’s authority
to request service. Conversely, a server may send a
Proof to a client to establish its authenticity, that
is, to prove its authority to identify itself by some
name or to provide some service the client expects.

Proofs can be transmitted as SPKI-style S-
expressions or directly transferred between JVMs
using Java serialization. No precision is lost in the
latter case, since the basic internal structure of ev-
ery proof component is a Java object corresponding
to an S-expression.

SPKI’s sequence objects also represent proofs of
authority. SPKI sequences are poorly defined, but
they are linear programs apparently intended to run
on a simple verifier implemented as a stack machine.
When certificates and opcodes are presented to the
machine in the correct order, the machine arrives at
the desired conclusion [8].

Transmitting proofs in a structured form rather
than as SPKI sequences is attractive for three rea-
sons. First, the structured proofs clearly exhibit
their own meaning; to quote Abadi and Needham,
“every message should say what it means” [2]. Sec-
ond, the structured proof components map one-to-
one to implementation objects that verify each com-
ponent. The SPKI sequence verifier, in contrast,
requires an external mapping to show that the state
machine corresponds to correct application of the

formal logic. Third, it is simple to extract lem-
mas (subproofs) from structured proofs, allowing
the prover to digest proofs into reusable components
(Section 4.4).

The logic encodes expiration times as part of the
restriction of a delegation, so that each proof need
be verified only once. The step of matching a request
to a proof automatically disregards expired conclu-
sions, since a current request cannot match a con-
clusion with a restriction that it was valid only in
the past. Figure 1 illustrates a proof. Since the
structure of the proof is preserved, if the topmost
statement should expire (perhaps because it depends
on the short-lived statement HD ⇒ KS ), the still-
useful proof of KS ⇒ KC · N may be extracted and
reused in future proofs.

transitivity

HD ⇒ KC ·N

transitivity

KS ⇒ KC · N
signed-certificate

HD ⇒ KS

name-monotonicity

HKC
· N ⇒ KC · N

signed-certificate

KS ⇒ HKC
· N

hash identity

HKC
⇒ KC

Figure 1: A structured proof. This proof shows that

document D is the object client C associates with the

name N . HKC
is a hash of the client’s key KC, HD a

hash of the document, and KS the server’s key.

4.4 The prover

A Prover object helps Snowflake applications col-
lect and create proofs. It has three tasks: it collects
delegations, caches proofs, and constructs new dele-
gations.

A user’s application collects delegations from
other users. Gateways collect delegations directly
from client applications. Both sorts of applications
use a Prover to maintain their collected delega-
tions in a graph where nodes represent principals
and edges represent a proof of authority from one
principal to the next (see Figure 2). The Prover

traverses the graph breadth first to find proofs of
delegation required by the application. For exam-
ple, if the Prover must prove that a channel KCH



speaks for a server S, it works backwards from the

node S to find the proof that A
V ∩X
⇒ S. A is fi-

nal, meaning that the Prover can make statements
as A; therefore, Prover simply issues a delegation
KCH ⇒ A to complete the proof.

A

CB

S

V ∩ X

X

VT

Figure 2: A look inside Alice’s Prover. Each node rep-

resents a principal, and each edge a proof. For example,

the edge from A to B represents the proof consisting of

the single delegation A
T
⇒ B. The node A is distin-

guished because it is final: it represents a principal that

the Prover can cause to say things.

When the Prover receives a delegation that is ac-
tually a proof involving several steps, the Prover

“digests” the proof into its component parts for stor-
age in the graph. Whenever it receives or computes a
derived proof composed of smaller components, the
Prover adds a shortcut edge (dotted line in Figure 2)
to the graph to represent the proof. These shortcuts
form a cache that eliminates most deep traversals of
the graph.

When an application controls one or more princi-
pals (e.g., by holding the corresponding private key
or capability), its Prover can store a closure (an
object that knows the private key or how to exer-
cise the capability) in its graph to represent the con-
trolled principal. When desired, the Prover can not
only find existing proofs, but complete new proofs
by finding an existing chain of delegations from the
controlled principal to the required issuer, then us-
ing the closure to delegate to the required subject
restricted authority over the controlled principal.

Our simple Prover is incomplete, but it is suit-
able for most authorization tasks applications face.
Abadi et al. note that solutions to the general access-
control problem in the presence of both conjunc-
tion and quoting require exponential time [1, p.726].
Elien gives a polynomial-time algorithm for discov-
ering proofs in a graph with only SPKI certificates
(no quoting principals) [7]. In the common case, we
expect applications to collect authorization informa-
tion in the course of resolving names, so that proofs

are built incrementally with graph traversals of con-
stant depth.

5 Channels

With the infrastructure above in place, applications
and services have the tools they need to generate,
propagate, and analyze authority from the source of
a request to its final resource server. The autho-
rization information must be propagated from one
program to the next through channels.

When a client makes a request of a server, the
server needs some mechanism to ensure that the
client really uttered the request. We implemented
three such mechanisms: a secure network channel,
a local channel vouched for by a trusted authority
in the same (virtual) machine, and a signed request.
We describe each and discuss how they are repre-
sented as principals in our unified system.

5.1 Secure channels

To implement a secure channel, we built a Java im-
plementation of the ssh protocol that can interoper-
ate with the Unix sshd service [26]. Then we built
Java ServerSocket and Socket classes based on ssh

that provide a secure connection. Either end of the
connection can query its socket to discover the pub-
lic key associated with the opposite end.2

We plugged our ssh sockets into RMI using socket
factories. Ssh ensures that the channel is secure be-
tween some pair of public keys. To make that guar-
antee useful, we embody the channel as a principal.
Consider the channel in Figure 3. To establish the
channel, the server (principal PS) uses public key
K1 and the client (PC) key K2 in the key exchange,
and together they establish secret key KCH as the
symmetric session key.

channel with secret key KCH

client (PC)

M

server (PS)

K2 K1

Figure 3: Treating a channel as a principal

Suppose a message M emerges from the channel
at the server. In the language of the formalism,

2Why did we build an ssh implementation? Some have
suggested that we use SSL over RMI, which is apparently now
fairly practical. When we began this work, however, RMI did
not have easily pluggable socket factories, and even once it
did, the only open-source SSL implementation we could find
did not operate well under RMI.



the ssh implementation promises that M ⇒ KCH .
The initial key exchange convinced the server that
KCH ⇒ K2, and the client may explicitly establish
that K2 ⇒ PC. Because M ⇒ KCH ⇒ K2 ⇒ PC ,
the server concludes that M ⇒ PC , that is, the mes-
sage says what the client is thinking.

5.1.1 How channels work

Figure 4 illustrates our RMI/ssh channel in action.
Initially, the server creates an instance of an RMI re-
mote object

�
a , defines the key KS that controls it,

and associates the object with an SSHContext that
manages any incoming messages for the object

�
b .

The SSHContext is associated with the RMI listener
socket

�
c that will receive incoming requests for the

object, and defines the public key (K1) that will par-
ticipate in ssh session establishment.

The client retrieves a stub
�
d for the remote ob-

ject from a name service it trusts. To exercise its au-
thority on the object, the client first establishes its
identity in thread scope. In a try ... finally

block, it establishes its own SSHContext
�
e and

a Prover
�
f that holds its private key KC . Any

method called in the run-time scope of the try block
will inherit the established authority, but the author-
ity will be canceled when control exits the block.

Then the client invokes a method m on the re-
mote stub. The remote stub has been mechanically
rewritten to wrap its remote invocations with calls to
the invoker helper method

�
g . The invoker method

makes the usual RMI remote call through the re-
mote reference

�
h , and the reference creates an ssh

socket
�
i using the SSHSocketFactory specified in

the stub. The ssh channel is established
�
j , and

each context learns the public key associated with
the opposite end (K1, K2). The method call passes
through the channel to the skeleton object on the
server

�
k , which forwards the call to the implemen-

tation object.

The programmer has prepended to each remote
method implementation a call to the no-argument
method checkAuth()

�
l . This routine discovers

from the local SSHContext the key K2 associated
with the channel that the request arrived on, and
concludes K2 says m. The server object was asso-
ciated at creation with the key KS , however, and
checkAuth() does not know that K2 speaks for KS ,
so it throws an SfNeedAuthorizationException.

RMI passes the exception back through the chan-
nel, where the client’s invoker method catches it.
The invoker inspects the exception to discover the
issuer KS it must speak for and the minimum re-
striction set regarding which it must speak for that

issuer.3 The invoker queries the Prover
�
f for a

proof of the required authority; since the prover con-
trols the client’s private key KC , it can construct
a statement to delegate authority from KC to K2.
The exception carries a reference to a special re-
mote proofRecipient object; the invoker calls a
method on it to pass

�
m the proof to the server. The

proofRecipient object
�
n stores the proof at the

server, and returns to the client.

The invoker again sends the original invocation m

through the remote reference, and the request trav-
els the same path to checkAuth on the server. This

time, the proof that K2

T
⇒ KS (via KC) is avail-

able, checkAuth() returns without exception, and
the remote object’s implementation method runs to
completion. Future calls encounter no exception as
long as the proof at the server remains valid, and are
only slowed by the layer of encryption protecting the
integrity of the ssh channel.

The client programmer need only establish the
client’s authority at the top of a code block; in-
side that scope, the Prover and the invoker together
handle the nitty-gritty of proof generation and au-
thorization. In the idiom we adopt, the server pro-
grammer defines the object server key KS and the
mapping from method invocation to restriction set
(T ) for a server object, then prefixes each Remote
method with calls to a generic checkAuth() that
uses those definitions. We chose this approach be-
cause it would be simple to automate the injection
of checkAuth() calls to insure that no Remote in-
terface is left unprotected.

5.2 Local channels

Setting up a secure network channel is an expensive
operation because it involves public-key operations
to exchange keys. If a server trusts its host machine
enough to run its software, it may as well trust the
host to identify parties connected to local IPC chan-
nels. Within our Java environment, we treat the
JVM and a few system classes as the trusted host,
and bypass encryption when connecting to a server
in the same JVM.

3In this example, the minimum restriction set T = {m}
contains the singleton request (method invocation) made by
the invoker. When some more-sophisticated mapping is in-
volved, where the server’s minimum restriction set may re-
veal sensitive structure of the service, the server may reveal
the set only incrementally. For example, its first challenge
may tell the client how to prove authority to learn the “real”
restriction set. The situation is analogous to ls -l foo/bar

in Unix: it reveals the authority required by a client to access
a resource bar, but only after the client has shown its author-
ity to learn that information by logging in with a UID that
has permission to read the directory foo.
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�
a

�
b

�
m

�
g

�
f

�
h

�
e

�
i

�
c

�
j

�
k

�
l

m

invoker

�
d

stub

impl.

reference

cache
proof

Recipient
proof

method
implementation

...
checkAuth();

SSHContext

K1

skeleton

client code

} finally {

}

remote

try {
pushIdentity();

popIdentity();

ServerClient

KS

...
object.m()
...

KC

Prover

K2

SSHContext

thread
current

Figure 4: How our ssh RMI channel is integrated with Snowflake’s authorization service. Dashed arrows

represent object references. Solid arrows � represent the critical remote call path, and dotted arrows

represent the longer path taken when the server requires fresh proof of the client’s authority.

In the local case, the ssh channel is replaced with
a Java “IPC” pipe implemented without any operat-
ing system IPC services, and the public keys corre-
sponding to the channel endpoints (K1 and K2) are
swapped directly. Because it was involved in con-
structing the key pairs and the keys are stored in
immutable objects, the trusted system class knows
whether a client holds the private key corresponding
to a given public key. Hence when a client is colo-
cated in the same JVM with the server, there is no
encryption or system-call overhead associated with
the channel, only RMI serialization costs.

5.3 Signed requests

Not all applications can assume that our ssh-
enhanced version of RMI is available as an RPC
mechanism. Indeed, the most visible RPC mech-
anism on the Internet is HTTP. To facilitate ap-
plications that use HTTP, we created a Snowflake
version of the HTTP authorization protocol.

HTTP defines a simple, extensible challenge-
response authorization mechanism [10]. The client
sends an HTTP request to the server. The server
replies with a “401 Unauthorized” response, in-
cluding a WWW-Authenticate header describing the
method and other parameters of the required au-
thorization. The client resends its request, this
time including an Authorization header. If the
Authorization satisfies the server’s challenge, the
server honors the request and replies with the re-
turn value of the operation. Otherwise, the server
returns a “403 Forbidden” response to indicate the
authorization failure.

HTTP defines two standard authorization meth-

ods. In Basic Authentication, the client’s
Authorization header includes a password in
cleartext. In Digest Authentication, the server’s
WWW-Authenticate challenge includes a nonce, and
the client’s Authorization header consists of a se-
cure hash of the nonce and the user’s password.
Both methods authenticate the client as the holder
of a secret password, and leave authorization to an
ACL at the server.

In our new method, called Snowflake Autho-
rization, the parameters embedded in the server’s
WWW-Authenticate challenge are the issuer that the
client needs to speak for and the minimum re-
striction set that the delegation must allow. The
Authorization header in the client’s second request
simply includes a Snowflake proof that the request
speaks for the required issuer regarding the speci-
fied restriction set. The subject of the proof is a
hash of the request, less the Authorization header.
Figure 5 shows an example.

5.3.1 Signed request optimization

The signed request protocol described above is
rather slow, since it incurs a public-key signature
for every request. We implemented a more efficient
protocol that amortizes the public-key operation by
having the server send an encrypted, secret message
authentication code (MAC) to the client. The client
then authorizes messages by sending a hash of 〈 mes-
sage, MAC 〉. The protocol is represented in the
end-to-end authorization chain by representing the
MAC as a principal.

SSL channels offer an alternative approach to
amortizing the initial public-key operation, with dif-



HTTP/1.0 401 UNAUTHORIZED

Content-Type: text/html

MIME-Version: 1.0

Server: MortBay-Jetty-2.3.3

Date: Sat, 08 Apr 2000 15:18:47 GMT

WWW-Authenticate: SnowflakeProof

Authorize-Client

Sf-ServiceIssuer: (hash md5

|ehtQYd4EpQXOa/ON6Smesg==|)

Sf-MinimumTag: (tag

(web (method GET)

(service |Sm9uJ3MgUHJvdGVjdGVpY2U=|)

(resourcePath "")))

Connection: close

Figure 5: An HTTP authorization challenge message

from a Snowflake server. It indicates the method, the

required resource issuer, and the minimum restriction of

a delegation that must be proven.

ferent security and performance trade-offs.

5.3.2 Authorization vs. authentication

The SPKI group argues that authorizing a request
without authentication as an intermediate step re-
duces indirection and hence removes opportunities
for attack [9]. When authentication is desired, one
can use the logic to demand it. For example, one
may delegate a resource to “authentication server’s
Alice,” requiring Alice to authenticate herself to the
server to invoke her authority over the resource. Al-
ternatively, one can resolve the secure bindings that
map keys to names after the fact to discover whose
authority was invoked. How meaningful an authen-
tication is depends on one’s philosophy about dele-
gation control [11].

5.3.3 Server authorization

Often a client also wants to verify that it is com-
municating with the “right” server. The notion
of “right” can be as simple as the server speak-
ing for the client’s idea of a well-known name like
www.dartmouth.edu, but in general the real ques-
tion is still one of authorization: Does this server
have the right to claim authority about Dartmouth’s
course list? Does that server have authority to re-
ceive my e-mail?

We addressed a limited version of this problem
with a second HTTP extension that enables a server
to show the authenticity of a document using the au-
thorization system. The server includes with docu-
ment headers a proof that the hash of the document
speaks for the server. The client completes the proof
chain and determines whether the authentication is
satisfactory.

5.3.4 Server implementation

We implement the server side of the signed-requests
protocol as an abstract Java Servlet Protected-

Servlet [15]. Concrete implementations extend
ProtectedServlet with a method that maps a re-
quest to an issuer that controls the requested re-
source and to the minimum restriction set required
to authorize the request. The concrete class also
supplies the service implementation that maps a re-
quest to a response. When each request arrives, the
ProtectedServlet ensures that appropriate autho-
rization has been supplied, and if not, constructs
and returns the “401 Unauthorized” response to the
client.

Notice that the server identifies only a single prin-
cipal that controls the resource, not an ACL. An
ACL is a specific group of users authorized to access
a resource; in our system, the client is responsible
to know and exploit its group memberships as rep-
resented in delegations [11].

5.3.5 Client implementation

We realize our client as an HTTP proxy that en-
hances a browser with Snowflake authorization and
server document-authentication services. Like any
proxy, it forwards each HTTP request from the
browser to a server. When a reply is “401 Unau-
thorized” and requires Snowflake authorization, the
proxy uses its Prover to find a suitable proof,
rewrites the request with an Authorization header,
and retries the request.

The proxy provides an HTML user in-
terface to its services at a virtual URL
http://security.localhost/. Through this
interface, the user can create a new private key pair,
import principal identities and delegations, and
delegate his authority to others. To delegate his
authority, the user views a history of recently-visited
pages, clicks the “delegate” link next to the page
he wishes to share, and selects the recipient from a
list of principals. The proxy generates an HTML
snippet for the user to deliver to the recipient. A
link inside the snippet names the destination page
and carries both the delegation from the user as
well as the proof the user needed to access the page.
When the recipient follows the link, his own proxy
imports the authorization information and redirects
his browser to the named page.

6 Applications

We built three applications to demonstrate the
Snowflake architecture for sharing.



6.1 Protected web server

The first application is simply a protected web file
server that uses Snowflake’s sharing architecture.
One user establishes control over the file server by
specifying the hash of his public key when starting
up the server; he may delegate to others permission
to read subtrees or individual files from the server
using the mechanisms described above.

6.2 Protected database

The second application attaches Snowflake security
to a relational email database. The original database
server accepts insert, update, and select requests
as RMI invocations on a Remote Database object,
and returns the results of the query as serialized
objects from the database. Adapting the applica-
tion to Snowflake required only minimal changes.
We modified the database instance constructor to
use a SshSocketFactory so that all connections to
the object use our ssh secure channels. Then, we
prepended each implementation of a method in the
remote interface with a call to the checkAuth()

method. The database clients required only a mod-
ification to their initialization code to install an
SSHContext and a Prover.

6.3 Quoting protocol gateway

The third application is a protocol gateway that pro-
vides an HTML over HTTP front-end to the email
database. A database can be configured to allow
certain principals access to certain data records. In
the course of serving multiple users, the gateway can
simultaneously access both Alice and Bob’s email
records. It is important that the gateway not mis-
use its authority and accidentally allow Bob to read
Alice’s email. The gateway programmer could try
to prevent this mistake by checking access-control
restrictions itself, but this approach duplicates the
access control checks in the database, and increases
the opportunity for error.

A better approach is to use quoting. The
gateway’s authority to access Alice’s email in the
database depends on the gateway intentionally quot-
ing Alice in its requests. Therefore, as long as the
gateway correctly quotes its clients in its requests on
the database server, the correct access-control deci-
sion is made by the server.

A transaction begins when the client (C) sends
an unauthorized request (R) to the gateway (G).
The gateway queries the client for the identity the
client wishes to use, and a delegation that the gate-
way speaks for the client to perform the task. The
gateway attempts to access the database server (S),

but the RMI authorization fails because the gate-
way has no authority. The gateway sees an excep-
tion that indicates the required issuer S and restric-
tion set (T ). The gateway generates a “401 Unau-
thorized” Snowflake Authorization HTTP response,
and in that response indicates it needs a proof that

G|?
T
⇒ S. By G|? the gateway means it needs

a proof of authority that the gateway quoting the
client speaks for the database. The client knows to
substitute its identity for the “pseudo-principal” ?;
this shortcut saves a round-trip from the gateway to
the client to discover the client’s identity.

The client proxy now knows it needs to delegate its
authority over the server to the principal “gateway
quoting client,” G|C. The client proxy generates
the proof and submits it to the gateway along with a
signed copy of its original request (showing R ⇒ C).
The gateway digests the new proof and forwards the
request to the database server. This time, the au-
tomatic RMI authorization protocol of Section 5.1.1
finds the proof in the gateway’s Prover, and the
database fulfills the request. The gateway builds an
HTML interface from the database results for pre-
sentation to the user. Subsequent requests are ac-
cepted without so much fanfare, since the database
server holds the appropriate proof of delegation.

The quoting gateway is a motivating application
because it spans each of the four boundaries dis-
cussed in Section 2. Our gateway operates identi-
cally whether the client and the server are in the
same administrative domain or different ones. It can
be colocated with the server, in which case its RMI
transactions automatically avoid encryption over-
head by using the local channels of Section 5.2. The
gateway constructs a view of an e-mail message from
several rows and tables of a relational database, and
so introduces a level of abstraction above the server
resource. Finally, the gateway spans protocols by
connecting an HTTP-speaking web browser with an
RMI-speaking database server. Despite each of these
boundaries, the gateway preserves the entire chain of
authority that connects the client to the final server,
enabling the server to make a fully-informed access-
control decision.

6.3.1 Correctness and trust

The client trusts the gateway not to abuse the
client’s authority, and for some applications, the
client may even trust the gateway to tell it how
much authority the gateway needs to do its job. To
establish that trust, the a client might first chal-
lenge the gateway to authenticate itself. If a gate-
way has received delegated authority from multiple
clients (Alice and Bob), it must ensure that when
it fulfills Bob’s request it does not accidentally in-



voke Alice’s authority. Where a conventional gate-
way would actually make access-control decisions to
determine what Bob is allowed to do, our gateway
only need be careful to correctly quote each client.
It is therefore easier to verify that a quoting gateway
is correct with respect to authorization.

In our system the notion of TCB is parameterized
by the resource being protected. For example, the
client software and hardware are part of the TCB
for any resources the client is authorized to manip-
ulate; when the client delegates a subset of those
resources to the gateway, the gateway software and
hardware become part of the TCB for that subset
of resources. Although quoting helps us write the
gateway application with greater confidence in its
correctness, we cannot escape the fact that a com-
promised gateway still compromises the resources
delegated to the gateway. Because the gateway is
involved in the transfer of authority, authorization is
not end-to-end in the pure sense of abstracting away
intermediate steps. It is end-to-end, however, in the
sense that authorization information now passes all
the way from client to server, and the proof of au-
thority verified by the server even includes evidence
of the gateway principal’s involvement.

7 Measurement

To better understand the costs of the Snowflake au-
thorization model, and how they compare to costs
of related systems, we timed the performance of our
Snowflake-enhanced RMI implementation and our
Snowflake-enhanced HTTP implementation. For
comparison, we also timed standard RMI and stan-
dard HTTP servers with and without SSL support.

7.1 Experimental method

The values reported in this section are the param-
eters of linear regressions. In setup cost and band-

width experiments, we vary the file length to sepa-
rate copy cost from connection setup. In setup and

per-request experiments, we vary the number of con-
nections made after some slow setup operation to
determine the amortizable part of the cost.

We made the measurements on 270 MHz Sun Ul-
tra 5 hosts with 128 MB RAM, connected by a
shared 10 Mbps Ethernet segment. The hosts run
Solaris 2.7, Apache 1.3.12, OpenSSL 0.9.5, a locally-
compiled Java JDK 1.2.2 with green threads,
PureTLS 0.9b1, and Cryptix 3.1.1. We used 1024-
bit RSA keys.

We ran each experiment ten times, discarding the
first iteration so that caches are warm except where
we intentionally measure setup costs. On each run,

we repeated an operation 10 to 1000 times, enough
to amortize measurement overhead, and noted the
total wall-clock time. When the nine runs had co-
efficient of variation greater than 0.1, we re-ran the
experiment. We report values to two significant fig-
ures. The figures show values for single-machine ex-
periments, where computation time, the dominant
source of overhead, cannot hide under network la-
tency. The raw data, complete tables of computed
parameters, standard deviations and R2 fitness coef-
ficients are available [12, Chapter 12]. We computed
95% confidence intervals on the linear-regression pa-
rameters and found them vanishingly small.

7.2 RMI authorization with

Snowflake

In this section, we quantify our implementation of
Snowflake authorization over Java remote method
invocation as described in Section 5.1. Figure 6 sum-
marizes the overhead our prototype adds to RMI.
The test operation is a Remote object that returns
the contents of a file. Most of the overhead present
in Snowflake is due to layering RMI over the ssh pro-
tocol. The extra work is is the server’s checkAuth()
call, which retrieves the caller’s public key, finds a
cached proof for that subject, and sees that the proof
has already been verified. The data-copy cost is un-
changed compared to the ssh case.
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Figure 6: The cost of introducing Snowflake authoriza-

tion to RMI. A basic RMI call costs 4.8 ms. Securing the

channel with ssh introduces significant overhead. Map-

ping the request into Snowflake and verifying the client’s

authority adds another 5 ms.

It costs 470 ms to establish a new Snowflake-
authorized RMI connection, reflecting the public-key



operation the client performs to delegate its author-
ity to the channel. When the client caches the dele-
gation but we make the server forget its copy after
each use, we learn that the server spends 190 ms
parsing and verifying the proof from the client.

7.3 HTTP authorization with

Snowflake

In this section, we quantify our implementation of
Snowflake authorization over the HTTP protocol as
described in Section 5.3. As shown in Figure 7, the
overhead of Java client and server code introduces a
five-fold slowdown over an optimized C implementa-
tion of HTTP. Most of the rest of Snowflake’s slow-
down we have accounted for in the slow libraries de-
scribed in Section 7.4.3.
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Figure 7: The cost of introducing Snowflake authoriza-

tion to HTTP. A trivial C client accessing an Apache

server takes 4.6 ms. Replacing the client and server with

convenient but inefficient Java packages brings the base-

line for HTTP to 25 ms. Most of Snowflake’s overhead

reflects the use of inefficient SPKI libraries, shown as an

inset box.

The black bars in Figure 8 show our measurements
of a Java SSL implementation, and the gray and
white bars show the costs of the Snowflake autho-
rization and document authentication protocols de-
scribed in Section 5.3. Notice that when public-key
encryption operations are involved, both protocols
require hundreds of milliseconds. When caching con-
nection information (Snofwflake MAC protocol and
identical requests versus a SSL request), they require
tens of milliseconds. Snowflake’s cached requests are
a factor of two slower than SSL requests, due in part
to differences in the protocol, and in part to the slow
libraries discussed in Section 7.4.3.

Minimum cost of HTTP GET 5 5
(C client and server)

Java+Jetty overhead for HTTP 20 20
Java SSL overhead 22
S-expression parsing ˜20
SPKI object unmarshalling ˜20
Other Snowflake overhead 17

(proof verification,
SPKI object marshalling)

MAC costs 28
(serialization, MD5 hash)

Total 47 110

Table 1: Breakdown of time spent in MAC authorization

protocol. Units are milliseconds.

7.4 Observations

We hypothesize that the Snowflake authorization
model is not prohibitively expensive. In fact, be-
cause it can subsume many hop-by-hop authoriza-
tion models, it allows applications and users to make
performance–security tradeoffs freely by selecting
alternate hop-by-hop authorization protocols and
plugging them into the same authorization frame-
work.

Do our measurements support our hypothesis?
Unfortunately, since our implementation is unopti-
mized and built on top of slow libraries, the num-
bers do not support our hypothesis unequivocally.
By comparing them with baseline experiments, how-
ever, we believe we can make a strong case for the
hypothesis. In the next two sections, we examine
the two parts of our hypothesis. In Section 7.4.3, we
argue that an optimized Snowflake promises to be
competitive with existing hop-by-hop protocols.

7.4.1 Comparable operations

Snowflake-enhanced protocols are not inherently
more expensive than other protocols with similar
guarantees. The measurements displayed in Figure 8
indicate that Snowflake performs similar encryption
steps as SSL. SSL spends about 400 ms starting up,
as does Snowflake. SSL can complete a request over
an established channel in about 50 ms. With our
MAC optimization, a Snowflake request takes about
110 ms (see Table 1).

Both SSL and Snowflake engage in similar op-
erations. SSL verifies message authenticity with
symmetric-key decryption and a CRC; Snowflake
does the same with an MD5 hash. Regardless of
protocol, the server parses and processes the request
and returns the reply. The SSL protocol checksums
and encrypts the reply; Snowflake securely hashes
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Figure 8: This graph displays the costs of standard SSL authentication (black bars) versus Snowflake client autho-

rization (gray bars) and server document authentication (white bars).

the reply document. In both cases, the client uses
a corresponding operation to verify the reply. Be-
cause the expensive cryptographic operations are
comparable, one expects optimized implementations
to perform comparably.

The additional sources of overhead in Snowflake
are time spent walking the proof graph and memory
consumed maintaining cached proofs. Our experi-
ments do not explore that space in depth, but as we
hint in Section 5.3.5, proofs are usually constructed
incrementally while walking the name graph, an op-
eration driven by the client user or application.

7.4.2 The performance–security tradeoff

By comparing our authorized-request protocol to
SSL we somewhat compare apples and oranges, for
the protocols make different performance–security
tradeoffs. For example, our protocol does not ver-
ify the authenticity of the server’s reply header;
since SSL provides integrity for the entire channel,
a Snowflake–SSL protocol could as easily show the
authenticity of all messages from the server.

In fact, part of the purpose of our system is

to enable such tradeoffs. With Snowflake, one is
free to choose an established hop-by-hop protocol
or to develop a new one. By stating in our logic
the authorization promises the protocol makes, one
can integrate the protocol into Snowflake’s end-to-
end authorization model. Conceivably, new pro-
tocols can be dynamically integrated into exist-
ing Snowflake-aware applications; in other cases, a
protocol-translating gateway can introduce the new
protocol to the distributed system without hiding
authorization information from the underlying ap-
plication.

7.4.3 Slow libraries

Our formal measurements and informal tests indi-
cate that a large fraction of Snowflake’s cost is need-
less overhead. Our baseline HTTP measurements
indicate that using Java and the convenient Jetty
web server incurs substantial overhead (250%). Fur-
thermore, our SSL measurements indicate that the
Java encryption library Cryptix imposes a substan-
tial bandwidth overhead.

What surprised us most was the overhead of the



SPKI implementation on which we built Snowflake’s
objects. In informal tests, parsing a 2 KB S-
expression from a string takes around 20 ms, and
converting the resulting tree into typed Java objects
takes another 20 ms. There is no reason a well-
implemented library should spend milliseconds pars-
ing short strings in a simple language; and 40+ ms
delays such as these explain much of the difference
between Snowflake’s warm-connection performance
and that of simple HTTP transactions (See Fig-
ure 7).

8 Related work

Our work is built primarily on the Logic of Authen-
tication due to Abadi, Burrows, Lampson, Plotkin,
and Wobber [1, 13, 25]. The Logic of Authentica-
tion introduced the notion of conjunct and quoting
principals, and their applicability for modeling prac-
tical mechanisms such as channels and multiplexed
gateways. We have preserved the generality and for-
mality of the Logic of Authentication while introduc-
ing the crucial feature of restricted delegation. The
structure of our implementation is similar to that of
Taos, but we generally shift the burden of proof to
the client so that the collection of access-control in-
formation happens in the course of name resolution
as described in Section 4.4.

Sollins describes the restricted delegation problem
as “cascaded authentication,” and proposes as a so-
lution a restricted delegation mechanism called pass-

ports [21] that provides for authorization of servers.
Varadharajan et al. propose a more general mech-
anism that incorporates both symmetric and asym-
metric encryption [23]. Neuman’s proxies are tokens
that express restricted delegation [17]. The Policy-
Maker system has a notion of delegations with re-
strictions specified by arbitrary code [5]. As we men-
tion in Section 3, SPKI has a notion of restricted
delegation close to the one we use. Because the only
principals in SPKI are public keys, it has high over-
head for authorization on a single machine [9].

Sollins’ passports, Neuman’s proxies, Policy-
Maker, and SPKI certificates are mechanisms with
only informally-described semantics, and hence have
no obvious and safe route to generalization. As we
discuss in the companion paper [11], our formal se-
mantics not only provides intuition for restricted del-
egation and end-to-end authorization, but it can ad-
vise us about the safety of possible extensions. Fur-
thermore, it guides us in building a system with a
minimal verification engine.

Appel and Felten’s higher-order predicate logic is
similarly inspired and applicable to SPKI [3]. Be-
cause our logic is a first-order propositional modal

logic, we can employ a conventional modal-logic se-
mantics [11]. Our logic is also simpler; we factor im-
plementation details out of the logic and leave only
the structure of authorization. For example, con-
cepts such as “digital signature” do not appear in
our proof rules; instead, we integrate them by map-
ping a key to a logical principal, and asserting that
a digital signature check validates the logical state-
ment K says x.

Several single-machine operating systems have
been built on the notion of restricted delegation;
these are often called capability-based systems. Ca-
pabilities in KeyKOS, Eros, and Mach are unforge-
able because the kernel manages them. A process
delegates its authorization by asking the kernel to
pass a capability, possibly with restriction, to an-
other process [6, 20, 4]. Amoeba capabilities, in
contrast, are secret random numbers, and may be
transmitted as raw data [22, 16]. Amoeba must as-
sume that a cluster is a secure network; we con-
sider such a cluster a single administrative domain.
Snowflake end-to-end authorization could integrate
either sort of capability implementation as a fast,
local authorization mechanism.

9 Summary and future work

We make a case for end-to-end authorization. Our
proposal is based on a formal logic that models re-
stricted delegations and hence models several exist-
ing hop-by-hop protocols. We describe the infras-
tructure of Snowflake, our implementation, includ-
ing two hop-by-hop protocols and applications that
exploit its end-to-end nature. Our end-to-end ap-
proach lets us connect systems with gateways that
preserve authorization information, and by integrat-
ing multiple hop-by-hop mechanisms, it gives us free-
dom to easily trade off performance and security.

We would like to cross our work on end-to-end au-
thorization with work on models of secrecy and in-
formation flow, to work toward an end-to-end model
that can capture notions of who should know what.
In such an architecture we imagine a gateway that
operates with only partial access to the information
it translates, passing from server to client encrypted
content that it need not view to accomplish its task.
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