
Naming and sharing resources

across administrative boundaries

Volume Two

Software documentation and experimental data

A Dissertation

Submitted to the Faculty

in partial fulfillment of the requirements for the

degree of

Doctor of Philosophy

in

Computer Science

by

Jonathan R. Howell

DARTMOUTH COLLEGE

Hanover, New Hampshire

26 May 2000

Examining Committee:

David Kotz (chairman)

Robert Gray

Doug McIlroy

Margo Seltzer

Roger Sloboda
Dean of Graduate Studies

Contents

E Snowflake software documentation 6

Package cal . 16
Classes . 17
The cal package is a calendar/appointment manager application
based on Snowflake naming.

Package gb . 21
Interfaces . 22
Classes . 22
The gb package is an awt-based graphical browser for Snowflake
namespaces.

Package Icee . 27
Interfaces . 28
Classes . 28
This is the “icee” process checkpointer, designed especially to provide
persistence for Java, which relies on more sophisticated state than the
typical scientific program.

Package ide . 30
Interfaces . 31
Classes . 31
The ide package contains Tools for working with Java code inside
Snowflake.

Package ide.Classes . 40
This package “introspects” on a class file.

Package jp . 41
Interfaces . 42
Classes . 44
Exceptions . 53
This package is the web proxy that implements client side of the
Snowflake HTTP protocol.

Package mail . 56

2

Classes . 57
The mail package is an email tool based on Snowflake
sf.Namespaces.

Package proof . 60
Classes . 62
Exceptions . 74
This package implements the proof verification (server tools) and
proof construction (client tools) components of Snowflake sharing
and security.

Package relational . 75
Interfaces . 76
Classes . 77
This package implements a relational database.

Package relational.email . 93
Interfaces . 94
Classes . 94
This package implements a relational database schema for an email
database.

Package rmi . 106
Interfaces . 107
Classes . 107
Exceptions . 109
This package implements the Snowflake-over-RMI authorization pro-
tocol.

Package sdsi . 111
Classes . 113
Exceptions . 120
This documentation only covers my changes to Morcos’ original SPKI
classes, which include the new implementations of tags and new prin-
cipals that Snowflake adds to SPKI.

Package sdsi.sexp . 121
Enhanced versions of Morcos’ implementation of Rivest’s S-
expressions, an unambiguous data structure representation.

Package servlet . 122
Interfaces . 123
Classes . 123
Exceptions . 128
This package includes servlets that implement the server-side of
Snowflake HTTP authorization, including a file server and an email
gateway.

Package sexp . 129

3

This is jonh’s manual C-to-Java translation of the C sexp code on
Rivest’s web site.

Package sf . 130
Interfaces . 131
Classes . 137
Exceptions . 152
The sf package includes the naming-related components of the
Snowflake prototype.

Package sf.rmi . 153
Classes . 154
The sf.rmi package includes my replumbing of RMI to support two
Snowflake features: self-rebinding remote stubs that recover their
bindings after losing a connection to the server, and a first hack at
security based on a very early version of the speaks-for-regarding
calculus.

Package sf.rsec . 156
The sf.rsec package was my second hack at security, and my first
implementation of an early version of the speaks-for-regarding calcu-
lus.

Package sf.sec . 157
The sf.sec package was my very first stab at a security model for
Snowflake.

Package ssh . 158
Interfaces . 159
Classes . 159
My own Java implementation of version 1 of the SSH protocol.

Package ssh.RSA . 173
Classes . 174
This package is my own implementation of RSA encryption for my
ssh class.

Package ssl . 176
Classes . 177
This package consists of wiring to attach the PureTLS implementa-
tion of SSL/TLS to RMI.

Package timingexp . 178
Interfaces . 179
Classes . 179
This package includes tools for timing parts of Snowflake, both for
diagnostic and evaluative purposes.

Package Tools . 185
Interfaces . 186

4

Classes . 186
Exceptions . 204
A collection of miscellaneous tools that do not belong in any other
package.

Package ws . 205
The ws package is a plugin for an IBM Research Web Intermediaries
(WBI) proxy to implement the client side of Snowflake/SDSI-based
web authorization.

F Experimental data 206

5

Appendix E

Snowflake software documentation

This appendix documents the software described in the body of the dissertation; it
includes packages that implement and packages that use the Snowflake
infrastructure.

This overview illustrates the use of the Snowflake components by highlighting some
example application code and indicating the Snowflake interfaces the code uses.

Some package and class documentation are omitted to save space. Often this is
done because they are deprecated, such as early prototypes. Some classes have
shortened descriptions because their method list is simply the set of methods
required to implement a superclass or interface.

Naming.

The first illustration consists of excerpts from ide.Shell, the command-line user
interface to Snowflake-named resources, and gives examples of both name lookup
and name binding. First, the Shell sets up its own namespace from first principles.

public static void main(String args[]) {
ROSOut rosout = new ROSOut(System.out);

RISIn risin = new RISIn(System.in);

// Create remotely-accessible versions of the terminal
// I/O streams.

Namespace root = new LocalNS();

// Create the root namespace for this shell; Programs
// we invoke will basically share it.

Namespace cmd = new LocalNS();

root.bind("cmd", cmd);

// Create a /cmd directory to hold bootstrap commands,
// and bind it into the root.

cmd.bind("mkrem", new mkrem());

6

Overview 7

cmd.bind("ls", new ls());

// Bootstrap commands include mkrem, for binding new, raw
// (low-level) resources, and ls, for exploring.

Namespace streams = new LocalNS();

root.bind("streams", streams);

streams.bind("stdin", risin);

streams.bind("stdout", rosout);

// Bind the I/O streams into the root namespace.
Sf.pushNamespace(root);

// Install the root namespace as the default namespace
// for this thread; any invocations of the sf.Sf

// tools will refer to it implicitly.
shell();

// Run the main loop.
}

A fancier shell might read an .rc file before proceeding to accept user input. Notice
that there is no $PATH variable; the single name /cmd resolves all command
lookups.

The main loop of the shell simply parses users commands, locates the desired
sf.Program resource, and invokes it with conventional resources configured into its
namespace. Hence Programs are invoked with only a single parameter, the
Program’s root namespace.

/**
* The main Program loop of the shell. Retrieves its I/O streams
* from the Snowflake namespace, and loops processing commands.
*/
public static void shell() {

RemoteOutputStream ros =

(RemoteOutputStream) Sf.lookupPath("streams/stdout");
RemoteInputStream ris =

(RemoteInputStream) Sf.lookupPath("streams/stdin");
...

// Retrieve the I/O streams from the namespace (sensible
// when called other than from the Unix command line), and
// wrap them for easy use with java.io classes.

while (!done) {
pw.print("% "); // prompt
... // input command and parse into words
if (!verb.startsWith("/")) {

Overview 8

// rooted command names are relative to the namespace root;
// others name commands in the /cmd directory.
verb="/cmd/"+verb;

}
Object ob = Sf.lookupPath(verb);

// Look up the command in the root namespace.
Namespace ns = (Namespace) Sf.lookupPath("/");
Namespace arg = ns;

arg.bind("argv", cargv);

// Bind the arguments to the name “argv” in the Program’s
// namespace

((Program) ob).run(arg);

// Now that the Program’s root contains all of its
// arguments, simply invoke the Program, passing it its new
// root namespace (context).

}
}

Sharing and Security.

The following examples explore the interface to Snowflake’s logical model for
sharing and securing resources.

An RMI server application. This snippet appears in relational.SSHDatabase

to configure a relational database object that demands Snowflake-style
authorization:

SSHContext context = SSHContext.getDefault();

// Get the default SSHContext object; we will use it
// to handle incoming requests.

Database theDatabase =

new InternalDatabase(context, serverPublicKey);

// Create a new relational database server.
// Instruct it to accept its requests only over SSH using the
// given context.
// The serverPublicKey argument is a SDSIPrincipal (parsed from the
// command line) that identifies the issuer. Any client must show
// its authority over the issuer.

InetAddress thisHost = InetAddress.getLocalHost();

Naming.rebind("//"+thisHost.getHostName()
+"/RMIDatabase", theDatabase);

// Bind the resource into a public name space. In this example,

Overview 9

// I publicize the database with the Java RMI Registry for
// expediency.

The corresponding code in relational.InternalDatabase implements the
authorization requirements:

public InternalDatabase(SSHContext context,

SDSIPrincipal serverIssuer)

throws RemoteException {
super(0 /*port*/,

new SSHClientSocketFactory(context),

new SSHServerSocketFactory(context));

// Tell the superclass constructor to only
// accept RMI connections over SSH channels,
// using the keys defined in the given context.

initAuthorization(serverIssuer);

// Store the required issuer for this service.
}
void initAuthorization(SDSIPrincipal serverIssuer) {

SexpList databaseTag =

(new SexpList()).append("database").append("mine");

SexpList sl =

(new SexpList()).append("tag").append(databaseTag);

this.requestTag = new Tag(sl);

// Construct a prototype tag that describes the minimum
// authority required of any client.

this.serverIssuer = serverIssuer;

// Take note of the required issuer.
}

Each of the implementations of Remote methods call checkAuth() before honoring
their requests. This insertion of checks is trivial and could easily be made
mechanical. Better yet, it could be done in the RMI remote reference layer with
sufficient plumbing.

public void insert(Relational[] ros) {
checkAuth();

...

}
public void createIndex(FieldDescriptor fd) {

checkAuth();

...

}

Overview 10

public ResultSet evaluateSelect(Select s) {
checkAuth();

...

}

The checkAuth()method tests that the client has the required authority.

void checkAuth() {
ssh.RSA.RSAKey k = SSHSocket.whoCalledMe();

SDSIRSAPublicKey subject = new SDSIRSAPublicKey(k);

// Determine the “subject” — the principal that
// actually made the request.

try {
Proof proof

= OneLineCacheRecipient.getCachedProof(subject);

// See if the subject’s proof has already been delivered.
if (proof==null) {

throw new InvalidProofException("no proof found");

// If not, demand proof from the client.
}
proof.verify(serverIssuer, subject, requestTag);

// Verify the proof we have on hand, and verify that it
// indeed supports the request (using the prototype tag
// created earlier). After the first verification, this
// operation becomes very fast.

return;

} catch (InvalidProofException ex) {
throw new SfNeedAuthorizationException(serverIssuer,

subject, requestTag,

OneLineCacheRecipient.getRecipient(), ex.toString());

// Convert any error into a demand for a proof
// of authority from the client.

}
}

That’s all there is to a simple server.

An RMI client application. Here is the corresponding access code in a simple
client:

public static void main(String argv[]) {
SSHContext myContext = SSHContext.newKeys();

// Generate a fresh key pair for communication

Overview 11

Prover2 prover = new Prover2("certs");

// Initialize the prover tool using a stash of delegations
// known to the client

SDSIKeyPair skp = new SDSIKeyPair(myContext.getPrivateKey(),

myContext.getPublicKey());

prover.introduceObject(skp);

// introduce the SSH channel keys as a principal to the
// Prover, so that it can write delegations to the SSH channel
// when necessary.

prover.loadCache();

// Have the prover bootstrap its delegations from the stash
// indicated in its constructor.

InvokeHack.setCurrentProver(prover);

// Install the prover as the active callback that handles
// demands of authority for RMI requests.

...

}

Notice that the client only need initialize its Prover and channel mechanism. No
other client code is changed. The client application accesses RMI objects just like
any other, and in the course of accessing objects whose references involve a
Snowflake-protected server object, the Prover automatically constructs the
appropriate proofs of the client’s authority.

An HTTP-to-RMI gateway application. The final example illustrates the
Snowflake calls made by the email gateway illustrated in Section 11.3. Since the
gateway is a client of the RMI database server, it begins with setup code very
similar to that of the previous example.

The gateway code itself, servlet.MailServlet, inherits from
servlet.ProtectedServlet, the class that implements the basic server-side
functionality of the Snowflake HTTP signed-requests protocol described in 10.3.3.

On each access, the gateway associates a specific SSH context with its current
thread, to ensure that only requests made by the current thread (in service of a
specific client) acquire the authority delegated to that channel, and that when the
gateway has finished servicing this client’s request, the authority used is revoked.
This code represents a scoped construct for amplification of rights.

public void doGet(HttpServletRequest request,

HttpServletResponse response)

Overview 12

throws ServletException, IOException {
try {

SSHContext.contextByThread.set(myContext);

// set up outgoing SSH context for this thread.
(new Handler(request,response)).doGet();

// Handle the request
} finally {

SSHContext.contextByThread.set(null);

// Don’t let other users of this thread borrow my context.
}

}

The getRequiredIssuer() method extends the functionality of the
servlet.ProtectedServlet superclass to indicate that when the HTTP client
delegates to the gateway, it must in fact delegate to the compound principal G|C ,
“gateway quoting client.”

public SDSIPrincipal getRequiredIssuer() {
SDSIPrincipal client

= new PseudoPrincipal("Your Identity Here");

// Produce a pseudo-compound-principal, telling the client
// where to fill in its own identity.

return new Quoting(prover.getIdentityPublicKey(), client);

// Construct G|?.
}

The getResourceTag() method likewise extends the superclass by describing how
resources this application serves (views of email documents) map into Snowflake
tags.

Tag getResourceTag() {
// Describe each of the parameters of the request as different
// tag components, to allow users maximum extensibility and
// granularity in constructing delegations.
SexpList messageSexp =

new SexpList().append("messageId").append(getMessageId());

SexpList mailSexp =

new SexpList().append("mail").append(messageSexp);

SexpList tagSexp =

new SexpList().append("tag").append(mailSexp);

Tag gatewayLevelTag = new Tag(tagSexp);

Tag unionTag = gatewayLevelTag;

if (serverTag!=null) {

Overview 13

unionTag = unionTag.union(serverTag);

// If the server has special requirements, also ask
// client to meet server’s requirements. This is only
// a hint to save a trip and a separate proof, since
// the server will be checking these requirements itself
// and would reject an insufficiently-authorized request.

}
return unionTag;

}

Finally, when it needs to hand off its authority to the channel it is using, the
gateway explicitly indicates the client it is working for. (It would be better to
multiplex the RMI channels so that different RMI requests went over different
logical channels, but this approach is a good start.)

// Make the statement M saysKCH ⇒ M |C.
Validity v = new Validity();

v.updateAfter(new Date(System.currentTimeMillis()+30000L));

Auth authCert = new Auth(q, ch, Tag.getTagStar(),

true, v);

// Unrestricted delegations are seldom used; here I choose an
// arbitrary expiration time of 30 seconds for the delegation,
// after which the gateway will automatically construct a new
// one when the server rejects the expired delegation.

// The authCert object itself is the statement
// KCH ⇒ M |C; the following signature
// adds the M says part that makes the statement ground
// truth.
SDSIPublicKey myPublicKey =

prover.getPublicKeyForPrincipal((SDSIObject) q.getQuoter());

SDSIPrivateKey myPrivateKey =

prover.getPrivateKeyForPublic(myPublicKey);

SDSISignature ss =

new SDSISignature(authCert, myPrivateKey, myPublicKey);

SignedCertificate sc = new SignedCertificate(authCert, ss);

outProof = new SignedCertificateProof(sc, null);

prover.digestProof(outProof);

// Hand the certificate to the Prover, who will use it
// automatically when it needs to show the authority of the channel
// over the RMI requests I am about to make.

These examples show how clients and servers of resources protected with

Overview 14

Snowflake’s security model access the tools in the proof package and related
packages to establish their own authority and verify the authority of programs with
which they communicate.

Bootstrapping.

Here are some mundane reminders about how the executable pieces are put
together, to assist in repeating experiments.

cd /snowflake
jdk-go

setenv CLASSPATH ‘make classpath‘

Insert -Djava.compiler=NONE on a command line to get more useful stack traces.

To start the proxy server that implements the client side of the Snowflake HTTP
protocol, run

java jp.ProxyConfig certs-jon

To start a Snowflake HTTP server, including both the file servlet and the email
gateway servlet, run

java jp.SecureServerConfig ’(nothing)’

To start a database, run

java sun.rmi.registry.RegistryImpl

java relational.SSHDatabase \

’(hash md5 |9sj+h6KmnTmPxoIiRB3V3g==|)’

To parse mail into the database, run

java relational.email.Mailbox mailbox remote

To start the servers used in the timing experiments, run

java servlet.SSLServerConfig -fourServers=true

java jp.SecureServerConfig -root /usr/local/apache/htdocs
java timingexp.TestRMIServer -publicKey certs-server/1.object

To run the timing experiments, run this command with an appropriate mode flag.

java timingexp.GenerateTestCases -mode=snowflake-signs \

Overview 15

-runTests=true

The set of mode flags appear in GenerateTestCases. To figure out which experiment
is relevant, start with the table that contains the numbers of interest. Use the index
table in Appendix F to map the table to an experiment number. Look up the
experiment number in the several experiments.m matlab file, and see which
timedata/ file the numbers are read from. The name of that file should indicate the
GenerateTestCases mode that produced it. The hostname “shovel” in the filename
means that the client (and any servers) were both on the same machine; the name
“plow” means that the client was on machine plow, remote from the servers.

@author jonh@cs.dartmouth.edu

Package cal

The cal package is a calendar/appointment manager application based on Snowflake
naming. Calendar queries are mapped into name resolution operations, so Snowflake
name bindings can be used to hide distribution and administrative boundaries from
this simple application. Similarly, a Union directory can be used to merge two
calendar databases into one virtual calendar visible with this application.

16

cal.Importer 17

Classes

Class Event
public class Event
extends java.lang.Object
implements java.io.Serializable

An Event is an (EventDescription, Occurrence) tuple.

An Event is the top type in the calendar schema; it binds timeless descriptions to
specific times, so that descriptions can be reused with reference semantics. That is,
you never need to copy a description, then update it in two places.

Constructors
public Event()

Class EventDescription
public class EventDescription
extends java.lang.Object
implements java.io.Serializable

An EventDescription is the timeless description of an event. It can be reused for
multiple occurrences, so that a single correction corrects every occurrence of the
event in the calendar (reference semantics).

Constructors
public EventDescription()

Methods
public String getDescription()
public String getLocalTimeZoneName()
public void setDescription(java.lang.String s)
public void setLocalTimeZoneName(java.lang.String s)

Class Importer
public class Importer
extends java.rmi.server.UnicastRemoteObject
implements sf.Program, java.io.Serializable

Constructors
public Importer()

Methods
public long parseDate(java.lang.String cowendarDate, long defaultDate)

Usage Parse a date from the web calendar into a Unix-style seconds-since-Epoch
dat.

public Object run(sf.Namespace root)

cal.Occurrence 18

Usage The command-line interface to the Importer. Specify as arguments the URL
of the calendar to import from, and the Snowflake name of the Container to
import the events into.

public static Vector split(char sep, java.lang.String s)

Usage Kind of like the Perl split() function. This belongs in the Tools package.

Class Importer.CommentSkipper
public class Importer.CommentSkipper
extends java.io.FilterReader

An I/O filter class that skips lines starting with #. The (Dartmouth) web calendar
export files include such comment lines.

Constructors
public Importer.CommentSkipper(cal.Importer this$0, java.io.Reader in)

Methods
public boolean isCR(int ch)
public int read()
public int read(char []cbuf, int off, int len)

Class Occurrence

public class Occurrence
extends java.lang.Object
implements java.io.Serializable

An Occurrence is the temporal manifestation of an EventDescription.
EventDescriptions may occur weekly, in which case one Occurrence represents each
week. An Occurrence represents one start and one ending.

Constructors
public Occurrence()

Methods
public long getEndTime()

Usage Get the end time in seconds since the Unix epoch.

public long getStartTime()

Usage Get the start time in seconds since the Unix epoch.

public boolean getTimesMeaningful()

Usage Learn whether the times are significant, or whether this occurrence is only
specified at “day-long” resolution.

public void setEndTime(long t)

cal.textview 19

Usage Set the end time in seconds since the Unix epoch.

public void setStartTime(long t)

Usage Set the start time in seconds since the Unix epoch.

public void setTimesMeaningful(boolean m)

Usage Specify whether the times are significant, or whether this occurrence is only
specified at “day-long” resolution.

Class Query

public abstract class Query
extends java.rmi.server.UnicastRemoteObject
implements sf.Namespace

A Query is a Namespace that contains Events that match a given query. A
namespace above this accepts lookups where the string specifies the query; the
result of the lookup is a dynamically-generated instance of this class that provides
the pool of events that match the lookup query.

This class is abstract. Subclasses specify particular types of queries that they
implement.

Constructors
public Query()

Methods
public void bind(java.lang.String name, java.lang.Object o)
public boolean completeList()
public Vector listAllNames()
public Object lookupName(java.lang.String name)
public Object lookupPath(java.lang.String name)
public Object lookupPath(java.util.Vector path, int cur)
public int version()

Class textview
public class textview
extends java.rmi.server.UnicastRemoteObject
implements sf.Program, java.io.Serializable

A text-based tool for inspecting a calendar (a Namespace full of Events).

Constructors
public textview()

Methods
public Object run(sf.Namespace root)

cal.TimeQuery 20

Usage Run the tool from the Snowflake shell command line, specifying the path to
the Namespace containing the Events to be viewed. The Namespace is often a
Query on some other calendar. If unspecified, this program looks for a
calendar at /cal.

Class TimeQuery
public class TimeQuery
extends cal.Query
implements sf.Namespace, sf.Program, java.io.Serializable

TimeQuery is a Query that matches events that overlap a given time interval.

Constructors
public TimeQuery()

Methods
public Object run(sf.Namespace root)

Usage Manually instantiate a timequery object from the Snowflake shell, specifying
the time range parameters.

Package gb

The gb package is an awt-based graphical browser for Snowflake namespaces.

21

gb.Browser 22

Interfaces

Interface GUISelector
public interface GUISelector

A GUISelector is a tool that knows how to find an already-open window in which to
display a specific resource.

Methods
public Window select(sf.Namespace root, java.lang.String path, gb.Browser
browser)

Classes

Class Browser

public class Browser
extends java.rmi.server.UnicastRemoteObject
implements sf.Namespace, sf.Program, java.io.Serializable

A Snowflake shell program that creates a graphical Namespace browser.

Constructors
public Browser()

Methods
public void bind(java.lang.String name, java.lang.Object o)
public boolean completeList()
public Vector listAllNames()
public synchronized void listClosed(java.lang.String path)

Usage Remove a window from the list of open windows.

Parameters
path - The Snowflake name for the resource the window is displaying.

public Object lookupName(java.lang.String name)
public Object lookupPath(java.lang.String name)
public Object lookupPath(java.util.Vector path, int cur)
public void openList(java.lang.String path)

Usage Open a new window showing a Namespace resource.

Parameters
path - specifies the Snowflake path to the resource to display.

public void openList(java.lang.String path, java.awt.Point location)

Usage Open a new window showing a Namespace resource.

Parameters

gb.gbinput 23

path - specifies the Snowflake path to the resource to display.
location - specifies the location for the display on the screen.

public synchronized void openListImpl(gb.Browser.OpenTask task)

Usage Open any windows queued for opening. A thread watches the queue of
windows waiting to be opened and calls this method to do the work.

public Object run(sf.Namespace root)

Usage Create a browser from the Snowflake shell.

public int version()

Class Browser.DefaultGUISelector
public class Browser.DefaultGUISelector
extends java.lang.Object
implements GUISelector

This DefaultGUISelector picks a GUI based on the object we’re viewing. It is used
to map a request to an already-open window, where appropriate, or to find an
appropriate GUI tool for the interface of the resource being opened.

This simple implementation knows how to display Namespaces, mail.Mailboxes,
and mail.MSU (“mail storage units”).

Constructors
public Browser.DefaultGUISelector(gb.Browser this$0)

Methods
public Window select(sf.Namespace root, java.lang.String path, gb.Browser
browser)

Class Browser.OpenTask
public class Browser.OpenTask
extends java.lang.Object

An OpenTask remembers a task that we intend to do while it sits in a queue,
waiting for the Opener thread to get a chance to service it.

Class gbinput

public class gbinput
extends java.awt.Panel

A one-line text input field with emacs-like keystroke editing commands. Used when
instantiating a Shell in graphical mode.

Constructors
public gbinput()

Usage Instantiate an 80-character-wide input field.

gb.GBList 24

public gbinput(int width)

Usage Instantiate an input field.

Parameters
width - width of field, in number of characters.

Methods
public void processEnter()

Usage The user typed enter; send the command to the inputBuffer where it waits
to get read out by readLine().

public String readLine()

Usage Read out a single typed command. When the user types a command, it sits
in a queue until read out with a call to this method.

public void scrollHistory(int dist)

Usage Scroll up and down in the history of entered commands. Called when the
user types ∧P or ∧N.

Class GBList

public class GBList
extends java.awt.Component
implements java.awt.ItemSelectable

GBList is a Graphical Browser List view. It displays the names bound in a
Namespace in an awt List window. It is supplied with names from a Namespace by
NSListPanel.

Constructors
public GBList()
public GBList(int i)

Methods
public synchronized void addItem(java.lang.Object itemKey, java.lang.String
itemName, int index)
public void addItem(java.lang.String itemName)
public synchronized void addItemListener(java.awt.event.ItemListener
itemListener)
public String getItem(int i)
public int getItemCount()
public Object getItemKey(int index)
public String getItemName(int index)
public Dimension getMinimumSize()
public Dimension getPreferredSize()

gb.NSListPanel 25

public Object getSelectedObjects()
public synchronized void paint(java.awt.Graphics g)
protected void processEvent(java.awt.AWTEvent ev)
protected void processItemEvent(java.awt.event.ItemEvent e)
public synchronized void removeAllItems()
public synchronized void removeItem(java.lang.Object itemKey)
public synchronized void removeItemListener(java.awt.event.ItemListener
itemListener)

Class gboutput

public class gboutput
extends java.awt.Panel

A GUI window that displays scrolling output text.

Constructors
public gboutput()

Usage Create a 24x80 scrolling output window.

public gboutput(int rows, int cols)

Usage Create a scrolling output window.

Parameters
rows - number of rows of text to display
cols - number of columns of characters to display

Methods
public OutputStream getOutputStream()

Usage Get an OutputStream for this window. Any text written to the output
stream will appear in this window. A shell binds the OutputStream returned
by this method to /streams/stdout in a Snowflake namespace, to cause all
Snowflake programs to send their output to the scrolling text window.

Class NSListPanel

public class NSListPanel
extends java.awt.Panel

An NSListPanel connects a Snowflake Namespace to a GBList GUI display of
names. It monitors the Namespace for changes using the NamespaceListener
interface to keep the GUI updated. It also catches ItemEvents from the GBList
that represent clicks on names, and opens a new window to display the underlying
resource.

Constructors
public NSListPanel(sf.Namespace rtparam, java.lang.String nspathparam,
gb.Browser brparam)

gb.NSListPanel.NListen 26

Usage Create a new GUI Namespace display.

Parameters
rtparam - root of a Snowflake namespace
nspathparam - path from rtparam that specifies the Namespace to display.
brparam - the Browser to use when opening new resources.

Methods
public Insets getInsets()

Class NSListPanel.NListen
public class NSListPanel.NListen
extends sf.NamespaceListenerAdapter

NListen keeps tabs on Namespace in case it changes, and updates the GUI
accordingly.

Serializable Fields
private final NSListPanel this$0

Constructors
public NSListPanel.NListen(gb.NSListPanel this$0, gb.NSListPanel panel)

Methods
public void namespaceEvent(sf.NamespaceEvent ev)

Usage The Namespace has changed. Pass it to my outer class.

Package Icee

This is the “icee” process checkpointer, designed especially to provide persistence
for Java, which relies on more sophisticated state than the typical scientific
program. Icee should run on Solaris 2.5 and Solaris 2.6.

To build: (cd Icee; make)

If you are on a Solaris 2.5 system, you may need to use:
(cd Icee; make depend; make)

To try it out, from this directory, the one containing Icee/, do:
setenv CLASSPATH Icee:$CLASSPATH

setenv LD LIBRARY PATH Icee:$LD LIBRARY PATH

(modify the above statements as necessary if you use sh)

Icee/icee Icee.Auto -verbose -period=5 Icee.Demo

After ten seconds or so (once you’ve seen a checkpoint), hit ∧C, and try:
Icee/icee -recover

The paper is at: http://www.cs.dartmouth.edu/ jonh/research/pjw3/

@author Jon Howell jonh@cs.dartmouth.edu

27

Icee.Control 28

Interfaces

Interface Auto.Callback
public static interface Auto.Callback

An object implements Callback to receive notification that a checkpoint recovery
has occurred.

Methods
public void recovered()

Usage This method is called whenever the checkpointer recovers a JVM from a
failure. Use it to catch such events and reopen state (such as network
connections) that are not automatically re-established by Icee.

Classes

Class Auto
public class Auto
extends java.lang.Thread

A class that “wraps” classes you really want to run, first starting a daemon thread
to periodically invoke the checkpointing process. It ”wraps” another class in the
sense that it is a minor syntactic change to the Unix command line:

java myotherclass myargs

becomes

java Auto -autoargs myotherclass myargs

(currently the second ’java’ needs to be ’icee’, since icee cannot be loaded
dynamically.)

Constructors
public Auto(boolean verbose, int period)

Methods
public static void main(java.lang.String []args)
public static void registerCallback(Icee.Auto.Callback c)
public void run()

Class Control

public class Control
extends java.lang.Object

Icee.Demo 29

The Java native class that provides the interface to the icee checkpointing service.

Constructors
public Control()

Methods
public static native int doCheckpoint()

Usage Call this method to take a checkpoint. Recovery always appears to happen
“during” a checkpoint (since that’s exactly the state of the system when it was
saved), so it will be at the return from this call that your program should test
to see if we just recovered and need to perform any special cleanup. The
return value indicates whether the program has just recovered.

Returns value of 0 if all is normal, value of 1 if we just recovered from a checkpoint.

public static native void doRestore()

Usage The hook to restore an existing checkpoint from Java code. This is like a
longjmp; it never returns.

Returns on success, doesn’t return (restored process sees its doCheckpoint() return
a 1 value).

Class Demo
public class Demo
extends java.lang.Object

A class that shows the checkpointer “in action.” Invoke with:
icee Icee.Auto -verbose -period=5 Icee.Demo

Then hit ∧C, and restart with: icee -recover

Constructors
public Demo()

Methods
public static void main(java.lang.String []args)

Package ide

The ide package contains Tools for working with Java code inside Snowflake.
Included are tools to convince javac to manipulate source and class files through
the Snowflake interface, as well as a ClassLoader to load classes from Snowflake
Namespaces. This package also contains the textual Shell for accessing Snowflake
sf.Programs, and the RemoteInputStream and RemoteOutputStream interfaces
and implementations for accessing Java-style streams across RMI.

30

ide.AddOMatic 31

Interfaces

Interface RemoteInputStream
public interface RemoteInputStream
extends java.rmi.Remote

A Remote version of InputStream, to allow java.io.InputStreams to be passed
across JVMs. Particularly useful because it lets us bind InputStreams into
Snowflake Namespaces.

Methods
public int available()
public void close()
public int read()
public RISReturn read(int max)
public void reset()
public long skip(long n)

Interface RemoteOutputStream
public interface RemoteOutputStream
extends java.rmi.Remote

A Remote version of OutputStream, to allow java.io.OutputStreams to be passed
across JVMs. Particularly useful because it lets us bind OutputStreams into
Snowflake Namespaces.

Methods
public void close()
public void flush()
public void write(byte []b)
public void write(byte []b, int off, int len)
public void write(int b)

Classes

Class AddOMatic
public class AddOMatic
extends java.rmi.server.UnicastRemoteObject
implements sf.Program, java.io.Serializable

A very simple program to demonstrate the Program, RemoteInputStream, and
RemoteOutputStream interfaces. It reads lines from the Snowflake standard input
stream and prints a running total of their numeric values.

Constructors

ide.CLSnooper.IndentStream 32

public AddOMatic()

Methods
public Object run(sf.Namespace root)

Usage The Snowflake command-line (Program) interface. Reads lines, prints sums.

Class ClassDependency

public class ClassDependency
extends java.lang.Object

Search a list of class files supplied on the input (using ide.ClassFile to examine their
bytecodes directly), looking for any that reference a given CONSTANT Class in
their constant tables.

Constructors
public ClassDependency()

Methods
public static void main(java.lang.String []args)

Class CLSnooper
public class CLSnooper
extends java.lang.ClassLoader

A CLSnooper was an attack at the “class evolution” problem. It was designed to be
attached to a ContainerServer to allow one to add new objects of a revised class
without discarding the old objects. Unfortunately, since even my interfaces were
changing rapidly at this time, not enough of the system was stable enough to allow
the new and old objects to communicate usefully.

Constructors
public CLSnooper()

Usage Create a snooping classloader. It defines several classes as precious,
indicating those that the CLSnooper shouldn’t try to load on its own lest it
confuse the JVM.

Methods
protected Class loadClass(java.lang.String name, boolean resolve)

Usage Attempt to resolve almost all classes (except those marked precious) by
myself. Leave very little up to the JVM, so that when this ClassLoader is
replaced with a fresh one, almost all classes get reloaded with new versions.

Class CLSnooper.IndentStream

public class CLSnooper.IndentStream
extends java.lang.Object

ide.loader 33

An indenting output stream that is superseded by a niftier class in the Tools
package.

Constructors
public CLSnooper.IndentStream(ide.CLSnooper this$0)
public CLSnooper.IndentStream(ide.CLSnooper this$0, java.io.PrintStream
baseStream)

Methods
public void indent()
public void outdent()
public void println(java.lang.String line)

Class CopyClass
public class CopyClass
extends java.lang.Object

A test of ide.ClassFile. This should open a .class file as a ClassFile, then be able to
write it out to a new .class file, without changing the semantics of the result.
(Eventually a different program will be able to modify/instrument the class file
before writing it out.)

@created Mon Oct 19 10:13:04 EDT 1998

Constructors
public CopyClass()

Methods
public static void main(java.lang.String []args)

Class javac
public class javac
extends java.rmi.server.UnicastRemoteObject
implements sf.Program, java.io.Serializable

A wrapper for Sun’s javac class to retrain it to retrieve source code and classes
from a Snowflake namespace rather than the Unix filesystem.

Constructors
public javac()

Methods
public Object run(sf.Namespace root)

Usage The Program (Snowflake shell command line) interface to the Java compiler.
Javac’s calls to FileInputStream and FileOutputStream are redirected (using
class file rewriting) to SFFileInputStream and SFFileOutputStream, which
talk to the Snowflake namespace.

ide.RISOut 34

Class loader

public class loader
extends java.rmi.server.UnicastRemoteObject
implements sf.Program, java.io.Serializable

A Program (Snowflake shell) interface to SFClassLoader, to enable the user to
explicitly load a Java class from a Snowflake Namespace.

Constructors
public loader()

Methods
public Object run(sf.Namespace root)

Usage The Program implementation.

Class RemoteHello
public class RemoteHello
extends java.lang.Object

Test the RemoteOutputStream by sending “hello” down it.

Constructors
public RemoteHello()

Methods
public static void hello(java.lang.String []args, ide.RemoteOutputStream os)

Class RISIn

public class RISIn
extends java.rmi.server.UnicastRemoteObject
implements RemoteInputStream

This class adapts an InputStream to the RemoteInputStream interface. Use it to
export a local InputStream as a distributed (Remote) Snowflake resource.

@classConcise true

Constructors
public RISIn(java.io.InputStream is)

Class RISOut
public class RISOut
extends java.io.InputStream

This class adapts a RemoteInputStream to the InputStream “interface” (abstract
class — yuk). Use it to pass a RemoteInputStream to existing Java code that
expects a java.io.InputStream.

@classConcise true

ide.ROSOut 35

Constructors
public RISOut(ide.RemoteInputStream ris)

Class RISReturn
public class RISReturn
extends java.lang.Object
implements java.io.Serializable

RemoteInputStream’s bulk read() interface is a little different than that of
InputStream. In InputStream.read, you pass in an array by reference, and let the
read() method populate it. Filling an array by Remote reference is a pretty bad
idea; and in any case, arrays aren’t Remote, so using the same interface would
involve sending a long, empty array across the net, only to have the
(partially-)populated array returned as a return value.

Instead, this class acts as a “packet” to carry the return value from
RemoteInputStream.read. The argument to read is an integer specifying the
maximum number of bytes to read. The result is this packet, carrying the bytes plus
an rc value used to indicate an EOF condition.

Serializable Fields
public int rc

• -1 => EOF, else rc == b.length

public byte b
• data read from stream

Constructors
public RISReturn()

Class ROSIn

public class ROSIn
extends java.io.OutputStream

The input-end of a RemoteOutputStream pipe; looks like a local OutputStream.
Use it to pass a Snowflake RemoteOutputStream to existing Java code that expects
a conventional java.io.OutputStream.

@classConcise true

Constructors
public ROSIn(ide.RemoteOutputStream ros)

Class ROSOut

public class ROSOut
extends java.rmi.server.UnicastRemoteObject
implements RemoteOutputStream

ide.SFFileOutputStream 36

This class adapts a java.io.OutputStream to the distributed (Remote) Snowflake
RemoteOutputStream interface. Use it to export a Java OutputStream resource as
a Snowflake resource.
@classConcise true

Constructors
public ROSOut(java.io.OutputStream os)

Class Set

public class Set
extends java.util.Hashtable

A Set from before java.util.Set appeared in JDK1.2.
@classConcise true
@deprecated since JDK1.2 finally supports this functionality.

Constructors
public Set()

Class SFClassLoader
public class SFClassLoader
extends java.lang.ClassLoader

A ClassLoader that reads Java classes from Snowflake resources in a Snowflake
namespace.

Constructors
public SFClassLoader(sf.Namespace root)
Usage Construct a ClassLoader, specifying the root namespace from which to

begin searching for Java class files.

Methods
protected Class loadClass(java.lang.String name, boolean resolve)

Class SFFileInputStream
public class SFFileInputStream
extends ide.RISOut

A replacement for java.io.FileInputStream that opens files from the Snowflake
namespace. Can be brute-force substituted into classes that expect
FileInputStreams using TweakClass.

Constructors
public SFFileInputStream(java.io.File filename)
Usage compatibility constructor to match calls to FileInputStream methods

public SFFileInputStream(java.lang.String path)
Usage compatibility constructor to match calls to FileInputStream methods

ide.Split 37

Class SFFileOutputStream

public class SFFileOutputStream
extends ide.ROSIn

A replacement for java.io.FileOutputStream that opens files from the Snowflake
namespace. Can be brute-force substituted into classes that expect
FileOutputStreams using TweakClass.

Constructors
public SFFileOutputStream(java.io.File filename)

Usage compatibility constructor to match calls to FileOutputStream methods

public SFFileOutputStream(java.lang.String path)

Usage compatibility constructor to match calls to FileOutputStream methods

Class Shell
public class Shell
extends java.lang.Object

A text-based command-line shell. It accepts input commands, looks them up in the
user’s Snowflake root Namespace under /cmd, executes them with the remaining
arguments bound into the subprogram’s local namespace, and awaits another
command.

This instantiation is substantially different than jonh.Shell; the latter, for
example, is the only one that uses an awt window to display output and collect
input. This class also has lost its Program interface, for some reason. Strange, since
there’s no reason one might not want to invoke shells recursively!

Constructors
public Shell()

Methods
public static void main(java.lang.String []args)

Usage Create a shell that uses System.in and System.out for I/O streams from the
Unix command line. This shell includes some default bindings for the early
sf.sec and sf.rsec Snowflake security model.

public static void shell()

Usage The main Program loop of the shell. Retrieves its I/O streams from the
Snowflake namespace, and loops processing commands.

public static Vector split(java.lang.String s)

Usage Perl-like split() function separates words on a command line.

ide.TweakClass.StoppyOutputStream 38

Class Split

public class Split
extends java.lang.Object

Yet another implementation of a simple perl-like split() function.

@todo belongs in the Tools package.

Constructors
public Split()

Methods
public static Vector split(java.lang.String input, char delimiter)

Class TweakClass
public class TweakClass
extends java.lang.Object

This program opens a .class file as a ClassFile, then be able to write it out to a new
.class file that references class B instead of class A. It is a static implementation of
class reference substitution. One idea was to do this on the fly in a classloader, so
that all Java programs could be transparently rewritten (for example, to get javac
to use SFFileInputStreams). Unfortunately, that approach didn’t pan out, so the
javac case is handled by manually invoking this TweakClass program to translate
the necessary parts of javac.

@created Mon Oct 19 11:22:26 EDT 1998

Constructors
public TweakClass()

Methods
public static void main(java.lang.String []args)

Usage Unix command-line interface.

public void realMain(java.lang.String []args)

Usage Takes four arguments:

inClass Class to tweak

outClass Name of output class

classA Class reference in inClass to change

classB What to replaces references to classA with

ide.TweakClass.StoppyOutputStream 39

Class TweakClass.StoppyOutputStream

public class TweakClass.StoppyOutputStream
extends java.io.FilterOutputStream

Stoppy is a debugging tool. When a rewritten class file doesn’t work right, you can
rewrite the class file with a null change, which should generate the same classfile. If
it does not, then there’s a bug in the input or output code of Classes.ClassFile. To
find it, ’od -Ax -tx1’ the class files, and diff them. Figure out what hex offset the
thing screws up on, and set that in the written== test in write(int b). Then put a
breakpoint there in the debugger, pop up a bit on the stack, and you’ll know which
scumsucking cretin routine is doing the screwing up.

(Don’t forget to uncomment the code below that actually uses Mister Stoppy.)

@classConcise true

Constructors
public TweakClass.StoppyOutputStream(ide.TweakClass this$0,
java.io.OutputStream out)

Package ide.Classes

This package “introspects” on a class file. Its components reflect all of the parts of a
class file, and are used by classes such as ide.TweakClass that want to rewrite a
class file.

The primary class is ClassFile; it loads a .class file and parses it into objects
represented by other classes in this package.

I have omitted these classes from the manual because they are largely mechanical
details, reifying various components of the Java Virtual Machine specification.

40

Package jp

This package is the web proxy that implements client side of the Snowflake HTTP
protocol. Its primary classes are the SfUserAgent that implements the protocol
itself and the PrincipalManager that provides the user interface. It is described in
my dissertation in Section 10.3.

41

jp.SfHttpProtocol 42

Interfaces

Interface RequestStates
public interface RequestStates

The SfUserAgent’s protocol is modeled as a small state machine. These are its
states.

Fields
public static final int TRY IDENTICAL

• First authorization attempt is to see if this request is identical to one we’ve
sent before.

public static final int TRY MAC
• The next-best thing after an identical request is a connection to a server that
we share a MAC secret with; the request can be very quickly authenticated
using a simple signature.

public static final int TRY HINT

• See if we have sent a request before to a prefix of this URL, and it required
Snowflake authorization. If so, it is prudent to try using the same authority
over this request that looks like a sub-request, to save a round trip.

public static final int TRY NOTHING

• We have no useful clues. Try sending the request without Snowflake
authorization, and if Sf auth is required, the server will demand it.

public static final int SEND REQUEST
• Having decided what authorization mechanism we’re going to use on this pass,
send the request to the server.

public static final int REQ DONE
• The request has been answered, and we have no way to improve on it even if
the answer was “401 Unauthorized,” so return the result to the client.

Interface SfHttpProtocol
public interface SfHttpProtocol

The definition of constants in the Snowflake version of the HTTP Authorization
protocol.

Fields
public static final String HTTP AUTH CHALLENGE

• Sent in an HTTP response (how’s that for confusing? It’s because the server
is challenging the client) to demand HTTP authorization of the client.

public static final String HTTP AUTH RESPONSE

jp.SfHttpProtocol 43

• The client responds to the HTTP AUTH CHALLENGE in its second request,
transmitting its proof of authority in the value of this header.

public static final String SNOWFLAKEPROOF
• The identifier for the Snowflake authorization method, supplied as the first
word after the HTTP AUTH CHALLENGE.

public static final String AUTHORIZECLIENT
• Means the client needs to authorize itself; service issuer and minimum tag are
supplied as arguments in SERVICEISSUER and MINIMUMTAG headers.

public static final String IDENTIFYCLIENT
• A challenge that tells the client to name a principal it wishes to use as its
identity. (The client doesn’t have to prove anything about that principal yet.)
This challenge is presented by a gateway trying to learn on whose behalf it
should operate.

public static final String AUTHORIZEPROXY
• Means the client needs to give the proxy (server in this transaction) authority
to perform the transaction. Ultimate service issuer, minimum tag, and proxy
principal who will be quoting the issuer are supplied.

A client that blindly responds to this challenge without considering the
trustworthiness of the challenging gateway risks falling for a
man-in-the-middle attack. The client should also consider the strength of the
delegation requested to avoid placing too much trust in the gateway.

Note that “challenge” is not the best word for this demand; the gateway (or
“proxy,” as I sometimes refer to the gateway in this code) is actually
requesting that the client delegate some authority to it.

public static final String SERVICEISSUER
• An extra header that carries information about the demands of an
HTTP AUTH CHALLENGE. This header specifies the issuer that the proof must
show the request speaks for.

public static final String MINIMUMTAG
• An extra header that carries information about the demands of an
HTTP AUTH CHALLENGE. This header specifies the minimum restriction set that
contains the request that inspired the challenge.

public static final String PROXYPRINCIPAL
• An extra header that describes the principal that must speak for the client
(and eventually the resource server); presented with AUTHORIZEPROXY
challenges.

jp.DigestInputStream 44

public static final String AUXILLIARYFACTS
• An extra header, now unused. Once designed to carry extra facts either
direction to be deposited in the recipient’s Prover.

public static final String CLIENTIDENTITY
• An extra header indicating the client’s identity in response to an
IDENTIFYCLIENT challenge.

public static final String REQUESTMAC
• The client sends this extra header, with an argument giving its public key, to
request that the server generate a secret MAC (Message Authentication Code)
and return it to the client encrypted with the client’s public key.

The server should be careful to ensure that any REQUESTMAC header
belongs to the signed text of a request, since it assumes a delegation from the
MAC itself to the signer of the request. An adversary could otherwise inject a
request for a MAC into a message, and steal the client’s authority.

The MAC protocol is something I brewed up, and it depends on secrecy, which
my logic says little about. It would be prudent to study this protocol further
or substitute a better-known protocol before trying to deploy this protocol in
production.

public static final String ENCRYPTEDMAC
• The server sends the encrypted MAC back to the client in this header.

public static final String DOCFORSERVERNAME
• A server sends to the client in this extra header a proof that the document
content (bytes following the headers and first blank line) of this message speak
for a symbolic name bound in the server’s secure SPKI namespace. The
document is represented in the proof by its SPKI sdsi.ObjectHash. This a
simple form of server authentication; note that it does not verify the authority
of the headers returned by the server, so (for example) it does not protect the
MAC protocol from MITM attacks.

Classes

Class DigestInputStream
public class DigestInputStream
extends java.io.FilterInputStream

A DigestInputStream is a convenience filter for taking the MD5 (or other digest) of
a data stream as it flows from source to sink, and ensuring that it matches an
expected digest (hash) value.

jp.History 45

@classConcise true
@author jonh@cs.dartmouth.edu

Constructors
public DigestInputStream(java.io.InputStream stream, sdsi.Hash expectedHash)
Usage Install a digest-checker on a stream. @param stream the source of bytes to

digest @param expectedHash the expected hash value of the complete stream

Methods
public void close()
Usage When the stream is closed, this overriding method will automatically check

the stream’s digest.

Exceptions

jp.DigestStreamException - if the hashes do not match.

Class ForwardedHttpServletRequest
public class ForwardedHttpServletRequest
extends jp.ForwardedServletRequest
implements javax.servlet.http.HttpServletRequest

Convenince class to implement the javax.servlet.http.HttpServletRequest
interface to allow a Server to build a “replacement” request based on an original
request, but with certain changes overlaid. Think of it as a way to implement
“union mount” for a Request.

All of the method implementations in this class forward to the corresponding
methods in the prototype object. A subclass need only override the methods it
wishes to interpose upon.
@classConcise true
@author Jon Howell jonh@cs.dartmouth.edu

Class ForwardedServletRequest

public class ForwardedServletRequest
extends java.lang.Object
implements javax.servlet.ServletRequest

Convenince class to implement the javax.servlet.http.ServletRequest interface
to allow a server to build a ”replacement” request based on an original request, but
with certain changes overlaid.

All of the method implementations in this class forward to the corresponding
methods in the prototype object.
@classConcise true
@author Jon Howell jonh@cs.dartmouth.edu

jp.IncomingResponse 46

Class History

public class History
extends java.lang.Object

A History object maintains a list of PageHistory objects, used to implement the
history list in the PrincipalManager user interface.

Constructors
public History(int size)

Usage Create a History list.

Parameters
size - maximum number of history entries to maintain.

Methods
public void addHistory(jp.PageHistory h)

Usage Insert a page reference in the history list. The oldest page is discarded.

public PageHistory findPage(java.lang.String url)

Usage Look up a PageHistory object by URL. Used by PrincipalManager when
trying to map a clicked URL back to the PageHistory object that carries
references to the Snowflake authorization information used when the page was
accessed.

public Iterator iterator()

Usage Retrieve an iterator that returns PageHistory objects in reverse
chronological order (newest first).

Class IncomingResponse
public class IncomingResponse
extends com.mortbay.HTTP.HttpHeader

This class represents an incoming HTTP response, whose result code and headers
have been extracted. It’s very different than com.mortbay.HTTP.HttpResponse,
which is a response being constructed to send outbound. This class doesn’t (yet)
have any useful write operations, it’s only a way to examine that incoming header.
It is being designed as part of a proxy, which reads the header, makes a decision,
then (sometimes) passes the original stream on to the client, not this header. I
imagine someday I could extend this to actually act like an HttpResponse, so that
the proxy could send it back out the same way it does a fresh HttpResponse.

Constructors
public IncomingResponse(java.io.InputStream is)

Usage Parse a stream into an IncomingResponse object, ready to return headers or
the content stream.

jp.IncomingResponse 47

public IncomingResponse(java.io.InputStream is, boolean rewindable)

Usage Parse a stream into an IncomingResponse object, ready to return headers or
the content stream.

public IncomingResponse(java.io.InputStream is, boolean rewindable, boolean
closeInputStream)

Usage Parse a stream into an IncomingResponse object, ready to return headers or
the content stream.

Parameters
rewindable - - if false, some overhead is saved by not setting up a

RecordingInputStream to capture the protocol line & headers for later
replay. Generally, rewindable = true for proxies that need to inspect the
stream but then replay it verbatim later; else it should be false.

closeInputStream - - if true, the is argument is closed when close() is
called on this object.

Methods
public void attachDocumentVerifier(sdsi.ObjectHash objHash)

Usage Attach a message digest verifier to this stream, so that if, when the stream
is fully read out, its digest does not match, the stream throws an IOException.

public void close()

Usage Close the content stream and the input stream that this object was parsed
from.

public int getCode()

Usage Return the numeric result code of the response, e.g., 100 (OK).

public InputStream getContentStream()

Usage Return a stream containing the content (everything past the headers).

public String getDesc()

Usage Return the string descriptor that follows the numeric result code.

public InputStream getReplayStream()

Usage Return a stream containing the entire response: protocol line, headers,
separator line, content.

public String getResponseLine()

Usage Return the response line of the response: the first line, with the numeric
result code.

jp.PageHistory 48

public void passAlongResponse(com.mortbay.HTTP.HttpResponse
outgoingResponse)

Usage A proxy uses this method to pass this incoming response out to a calling
client using an outgoing HttpResponse object. If we had an exception parsing
the input stream, then we play out the input verbatim. Otherwise, we play
out this object as a header block followed by the rest of the input stream.
That allows any changes made to the headers to show up at the client.

public void write(java.io.OutputStream out)

Usage Write this response onto the specified OutputStream. This method only
writes out the response line and the headers; it does not copy the content.
Hmm, maybe it does not even write out the response line.

Class MacGuy

public class MacGuy
extends java.lang.Object

A little wrapper class to wrap up a MAC along with its precomputed hash; used to
store MAC info together in a HashMap in SfUserAgent.

Class PageHistory

public class PageHistory
extends java.lang.Object

A PageHistory contains the state associated with visiting a web page. It includes
the Snowflake (HTTP with signed requests protocol) authorization information,
useful for delegating authority over the page to another.

Fields
public String url

• The URL of the visited page.
public String title

• HTML document title, if known. (currently, I’m not parsing out of the
response stream.)

public int snowflakeStatus
• Indication of whether Snowflake authorization was used for this document,
and its outcome.

public Proof sfProof
• The Snowflake proof used to access this document. NULL when
snowflakeStatus!=SF SUCCESS.

public static final int SF NOSFAUTH
• loading this page did not require a Snowflake proof authorization

jp.SecureServerConfig 49

public static final int SF SFUNAUTH
• this page did require a Snowflake proof, but we couldn’t produce it.

public static final int SF SUCCESS
• this page required a Snowflake proof, and we supplied it

Constructors
public PageHistory()

Class PrincipalManager
public class PrincipalManager
extends javax.servlet.http.HttpServlet

This class implements the user interface to the SfUserAgent. It is a servlet that
managing keys, delegations, and name bindings via the web browser.

@author jonh@cs.dartmouth.edu

Constructors
public PrincipalManager(proof.Prover2 prover, jp.History history)

Usage A principal manager is instantiated by the SfUserAgent, and given
references to the SfUserAgent’s prover and page view history.

Methods
public void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

Usage A request directed at the PrincipalManager is delivered here by the servlet
mechanism.

public static void initialize()

Usage The standard servlet initialization method.

Class ProxyConfig

public class ProxyConfig
extends com.mortbay.HTTP.Configure.BaseConfiguration

A Jetty configuration class that sets up a proxy with an SfUserAgent installed to
process all outgoing requests.

Constructors
public ProxyConfig(Tools.Options opts)

Usage Create a configuration bound at the given host address and port.

Methods
public static void main(java.lang.String []args)

Usage Start the SfUserAgent proxy server.

jp.SfUserAgent 50

Class SecureServerConfig

public class SecureServerConfig
extends com.mortbay.HTTP.Configure.BaseConfiguration

A Jetty configuration class that sets up a servlet server, the secure
(Snowflake-HTTP) file servlet, and the secure mail gateway.

Constructors
public SecureServerConfig(Tools.Options opts)

Usage Create a configuration bound at the given host address and port.

Methods
public Class listenerClasses()

Usage Override a default mortbay method to supply servlet.NaglessListener

listeners to handle requests.

public static void main(java.lang.String []args)

Usage Start the servlet server and servlets from the Unix command line.

Class SfUserAgent
public class SfUserAgent
extends com.mortbay.HTTP.Handler.NullHandler
implements SfHttpProtocol, RequestStates

This handler is called to manage requests on the proxy port

The Sf HTTP Authorization protocol is based on the HTTP “Authentication” spec
in RFC 2617. ftp://ftp.isi.edu/in-notes/rfc2617.txt

It’s called a SfUserAgent to represent the fact that it is trying to act like part of the
user’s web browser. (It belongs on the same host, for example.) And the notion of
“proxy” in Snowflake has to do with protocol translation in the middle of a
transaction somewhere. This use of HTTP proxying is meant to be the endpoint of
a transaction, as close as we can get to the user.

@todo Ensure that it’s always the same user accessing this proxy, perhaps by using
identd on localhost.

@todo turn history-tracking stuff into a second handler layer that’s independent of
the authenticating proxy. (Would that require a second snoop-’n’-parse of the
incoming headers? yuk!)

@author jonh@cs.dartmouth.edu
@author Based on com.mortbay.HTTP.*.ProxyHandler

jp.StateRef 51

Constructors
public SfUserAgent()
public SfUserAgent(java.util.Properties properties)

Usage Constructor from properties. Calls setProperties. Three properties are
defined for this handler: certDir, useMacs, and authenticateServer.

certDir is a directory that contains bootstrap certificates, and where new
certificates or keys may be stored.

useMacs is a boolean parameter indicating whether the client should try to
use the MAC protocol to speed requests.

authenticateServer is a boolean parameter that indicates whether the
client should check for a proof of document authenticity from the server.

Parameters
properties - Configuration properties

Methods
public History getHistory()
public IncomingResponse getHTTP(java.net.InetAddress inetAddress, int port,
java.net.URL url, com.mortbay.HTTP.HttpRequest request)

Usage If the get fails, the error comes out as a PageException, which the previous
version of getHTTP goes ahead and squirts back to the browser. This method
is factored out so it can be called in other contexts other than the proxy, such
as by the experimental testing harness timingexp.HttpExp.

public static byte getRequestAsBytes(com.mortbay.HTTP.HttpRequest request)

Usage Translate a Jetty HttpRequest into a bytestring for hashing. This method is
used by servlet.PSHandler, too. Yuk; it should be factored into a Tools class
or somewhere more reasonable.

public void handle(com.mortbay.HTTP.HttpRequest request,
com.mortbay.HTTP.HttpResponse response)

Usage Handle proxy requests. Jetty sends requests coming in from the browser to
this method.

Parameters
request - the request from the browser
response - the object that collects the response to return to the browser. It

is returned once handle() returns.

public void setProperties(java.util.Properties properties)

Usage Configure from properties. This handler doesn’t support dynamic
reconfiguration.

Parameters
properties - configuration.

jp.Tool 52

Class StateRef

public class StateRef
extends java.lang.Object

A class that lets a servlet incrementally build a response by tweaking the
parameters that appeared in a request.

Class Tool

public class Tool
extends java.lang.Object

A rudimentary manual tool for setting up and packaging keys and delegations. It
was originally called from the command line while I experimented with different
delegations and keys; now its main methods are called from PrincipalManager.

Constructors
public Tool()

Methods
public static SignedCertificate generateAuthCertificate(sdsi.SDSIPublicKey
issuerPublic, sdsi.SDSIPrivateKey issuerPrivate, sdsi.Subject subject,
java.lang.String restrictionTag, boolean propagate, int validDays)

Usage The central work of creating a delegation; used by PrincipalManager.

public static void generateAuthCertificate(java.lang.String destFilename,
java.lang.String issuerFilename, java.lang.String subjectFilename, java.lang.String
restrictionTag, boolean propagate, int validDays)

Usage Standalone delegation generator.

public static SignedCertificate generateDefCertificate(sdsi.SDSIPublicKey
issuerPublic, sdsi.SDSIPrivateKey issuerPrivate, java.lang.String name, sdsi.Subject
subject, int validDays)

Usage The central work of creating a name-binding delegation certificate (what
SPKI calls a “def”).

public static void generateDefCertificate(java.lang.String destFilename,
java.lang.String issuerFilename, java.lang.String name, java.lang.String
subjectFilename, int validDays)

Usage Standalone name-binding delegation generator.

public static SDSIKeyPair generateKeyPair()

Usage The central work of key-pair generation, factored into a component useful to
the PrincipalManager.

public static void generateKeyPair(java.lang.String baseFilename)

jp.PageException 53

Usage Standalone key generation. This code to generate and save an RSA key pair
is essentially lifted from sdsi.control.SDSIMainFrame.

public static void main(java.lang.String []args)

Usage The original command-line interface to jp.Tool.

Class TweakedServletRequest

public class TweakedServletRequest
extends jp.ForwardedHttpServletRequest

Implements the javax.servlet.http.HttpServletRequest interface to allow a
ServerRef to build a “replacement” request based on an original request, but with
changes overlaid. This implementation lets you change the HTTP parameters
(name/value pairs that appear separated by ’&’ characters in a GET request, for
example). Based on ForwardedHttpServletRequest (and hence
ForwardedServletRequest), this class overlays the caller’s changes encoded in a
StateRef over the original request.

@author Jon Howell jonh@cs.dartmouth.edu

Methods
public String getParameter(java.lang.String name)

Usage Overrides getParameter to get a parameter from the ref tweaks supplied in
the constructor.

public Enumeration getParameterNames()

Usage Overrides the default method to get parameter names from the ref tweaks
supplied in the constructor.

public String getParameterValues(java.lang.String name)

Exceptions

Interface DigestStreamException

public class DigestStreamException
extends java.io.IOException

This exception is thrown when a stream does not exhibit the hash it was supposed
to have. It is an IOException so that it appears at close() time.

Constructors
public DigestStreamException()
public DigestStreamException(java.lang.String p0)

jp.ParseException 54

Interface PageException

public class PageException
extends java.lang.Exception

A PageException is a handy way to shape control flow in a server. The server builds
an output page, but when it needs to throw an exception that should be reported to
the server, it simply throws a PageException (or an appropriate subclass). The
PageException itself carries info about the error page to be displayed, and can be
easily used in a generic catch {} block to present the error to the user.

This is a nicer organization than trying to build fancy error pages in-line where the
errors are discovered. They are, after all, exceptions.

Fields
public static final int GATEWAY

• Shorthand for HttpServletResponse.SC BAD GATEWAY.

Constructors
public PageException(java.lang.Exception source)

Usage Convert another exception into a PageException that knows how to display
itself.

public PageException(int code, java.lang.Exception source)

Usage Convert an exception into a PageException, supplying the numeric response
code to associate with the exception report.

public PageException(int code, java.lang.String description)

Usage Create a PageException, supplying both the description and the numeric
response code.

public PageException(java.lang.String description)

Usage Create an exception with the given description and an
SC INTERNAL SERVER ERROR response code.

Methods
public void sendResponseTo(javax.servlet.http.HttpServletResponse resp)

Usage Display the exception as an HTML page.

Parameters
send - the HTML page as this response.

public String toString()

Usage Return the exception as a vanilla text string.

jp.ParseException 55

Interface ParseException

public class ParseException
extends java.lang.Exception

An Exception thrown by an IncomingResponse object when the incoming stream
cannot be parsed as a valid HTTP response.

Constructors
public ParseException(java.lang.String str)

Package mail

The mail package is an email tool based on Snowflake sf.Namespaces. It has a
graphical interface, and exploits the Snowflake user-centric model of naming and
distribution.

56

mail.MailPanel 57

Classes

Class CategoryView
public class CategoryView
extends java.rmi.server.UnicastRemoteObject
implements sf.Namespace, sf.Program

A namespace that abstracts another namespace by binding each Message object in
the other namespace to the category it belongs to.

@classConcise true
@todo implementation incomplete.

Constructors
public CategoryView()

Class HeaderView

public class HeaderView
extends java.rmi.server.UnicastRemoteObject
implements sf.Namespace

View a collection of messages according to their values for a given header. The
email application installs one of these Namespace objects to present the user with
(for example) a by-Subject or by-From view of his email box.

@classConcise true

Constructors
public HeaderView(mail.Message target)

Class Mailbox
public class Mailbox
extends java.rmi.server.UnicastRemoteObject
implements sf.Container, sf.Program, java.io.Serializable

A Mailbox is an sf.Container that holds a collection of mail. It can be abstracted
over by other Namespaces to merge mailboxes or filter or sort them by different
properties.

@classConcise true

Constructors
public Mailbox()
public Mailbox(java.io.InputStream is)

mail.MSU 58

Class MailPanel

public class MailPanel
extends java.awt.Panel

An awt GUI view of a Mailbox, which is a collection of Messages in a Namespace
bound to names that represent some property of each message.

Constructors
public MailPanel(sf.Namespace rtparam, java.lang.String nspathparam,
gb.Browser brparam)

Methods
public Insets getInsets()

Class MailPointer

public class MailPointer
extends java.lang.Object

Bindings between messages and “category” objects that reflect how the user has
sorted each message.

Class Message
public class Message
extends java.rmi.server.UnicastRemoteObject
implements sf.Namespace, java.io.Serializable

A single immutable message, preserved as it arrived from the mail system.

@classConcise true

Constructors
public Message(java.io.BufferedReader rdr)

Methods
public String getHeader(java.lang.String header)

Usage Return the value of the specified header.

Parameters
header - omit the ’:’. Example: String messageId = getHeader(’Message-Id’);

Class MSU
public class MSU
extends java.rmi.server.UnicastRemoteObject
implements sf.Namespace, java.io.Serializable

Message Storage Unit includes the read-only Message object (the original thing
received over the network), plus the user’s local annotations, which are mutable.

mail.SubjectView 59

@todo This is really a useless class. Wouldn’t a container with a (Message)
message and a (Container) annotations in it do just as well?

@classConcise true

Constructors
protected MSU()
public MSU(java.io.BufferedReader br)
public MSU(mail.Message m)

Methods
public HashNS getAnnotations()

Usage Return a namespace which lists the user’s annotations on this message.

public Message getMessage()

Usage Return the Message object this unit represents.

Class MSUPanel

public class MSUPanel
extends java.awt.Panel

Display a message in an awt window. A GUI view of an MSU (and the message it
contains).

Constructors
public MSUPanel(sf.Namespace rtparam, java.lang.String nspathparam, gb.Browser
brparam)

Methods
public Insets getInsets()

Class SubjectView
public class SubjectView
extends java.rmi.server.UnicastRemoteObject
implements sf.Namespace, sf.Program

A namespace that abstracts another namespace by binding each Message object in
the other namespace to its subject line.

@classSummaryOnly true
@deprecated A specific version of what is now HeaderView.

Package proof

This package implements the proof verification (server tools) and proof construction
(client tools) components of Snowflake sharing and security.

The classes in this package are sorted into three categories. The first category are
those classes that manage proof verification, typically what a server might do:

• Proof
• HashProof
• InvalidProofException
• MacProof
• NameLeftMonotonicity
• QuotingRule
• SignedCertificateProof
• TrivialProof
• TwoStepProof

The second category include other tools, notably the client’s Prover tool:

• KeyTools
• ProofCache
• Prover2
• SDSIKeyPair

The third category are deprecated parts of a previous version of the Prover tool, and
have been omitted:

• Prover
• AuthClosure
• BasicUnlockKey
• HashEquivalence
• UseAuth

60

proof.SubjectView 61

• NameNode
• DefNameNode
• HashNameNode
• RootNameNode

proof.KeyTools 62

Classes

Class HashProof
public class HashProof
extends proof.Proof

This proof proves that a principal speaks for itself; but it considers the fact that the
principal has multiple representations (original plus hashes). That is, the hash of a
principal is just an unambiguous shorthand notation for the principal itself. In the
logic, the hash is formally treated as a separate principal (hence the need for this
proof class), but we also assume that

HA = A

That is,

(HA ⇒ A) ∧ (A ⇒ HA)

Constructors
public HashProof(sdsi.SDSIPrincipal thePrincipal, boolean hashIsSubject,
java.lang.String hashType)
public HashProof(sdsi.sexp.SexpList list)

Methods
protected void directVerify()

Usage verify that the proof steps are indeed valid, and that they combine as
advertised to show the claimed result

public SDSIPrincipal getIssuer()
public Subject getSubject()
public Tag getTag()

Class KeyTools
public class KeyTools
extends java.lang.Object

A batch of tools related to parsing S-expressions from files and streams, and parsing
from S-expressions Proofs, SDSIKeyPairs, and other Snowflake extensions to
Morcos’ sdsi package.

Constructors
public KeyTools()

Methods
public static boolean arePrincipalsEquivalent(sdsi.SDSIObject subjectObj,
sdsi.SDSIObject issuerObj)

proof.MacProof 63

Usage Check for equivalence up to hash. Can’t tell if two different hashes are
equivalent, of course, but can help when one is a principal and the other is its
hash.

public static SDSIPrivateKey getPrivateKey(java.lang.String filename)

Usage Parse a private key out of a Unix file

public static SDSIPublicKey getPublicKey(java.lang.String filename)

Usage Parse a public key out of a Unix file

public static ObjectHash hashObject(byte []object)

Usage Hash a bytestream and return a SPKI “ObjectHash,” a principal that
identifies that particular bag of bytes.

Parameters
object - the array of bytes to hash.

public static ObjectHash hashStream(java.io.InputStream inStream)

Usage Hash a bytestream and return a SPKI “ObjectHash,” a principal that
identifies that particular bag of bytes.

Parameters
inStream - the stream of bytes to hash.

public static SDSIObject parseBytes(byte []buf)

Usage Parse a general SDSIObject (including Snowflake extensions) out of a byte
buffer.

public static SDSIObject parseString(java.lang.String str)

Usage Parse a general SDSIObject (including Snowflake extensions) out of a String.

public static SDSIObject processFile(java.io.File file)

Usage Parse a general SDSIObject (including Snowflake extensions) out of a Unix
file.

Parameters
file - Java File object pointing at the file.

public static SDSIObject processFilename(java.lang.String filename)

Usage Parse a general SDSIObject (including Snowflake extensions) out of a Unix
file.

Parameters
filename - String path name of the file.

proof.MacProof 64

Class MacProof

public class MacProof
extends proof.Proof

An object speaks for the hash of a (secret) MAC (Message Authentication Code,
which term I’m probably using incorrectly) if we can present a hash of strcat(the
object, the secret MAC). That would mean that the holder of the secret MAC
allowed its hash to be taken with the object; it’s essentially how one ”signs” an
object using a secret number.

This proof shows that an ObjectHash speaks for another ObjectHash, where the
first is the hash of (object,MAC) and the second is hash of just the MAC. For
.verify() to succeed, this proof needs to be supplied in advance with a pointer to the
object to hash as well as the secret MAC. (These pointers are obviously not
transmitted with the object over the network.)

To verify proofs that depend on an instance of this class, a server must supply in
advance the appropriate MAC binding that it accepts. That is, MAC signed
requests are not self-evident like a public key; they depend on a prior agreement
between client and server. The prepareVerifymethod is how the server indicates
to the verify method its understanding of that prior agreement.

This proof includes belief in a particular application of the handoff rule...

@todo this is one place where we’d decide how often we believed in it.

Constructors
public MacProof(byte []object, byte []mac)
public MacProof(byte []object, sdsi.ObjectHash objectHash, byte []mac,
sdsi.ObjectHash macHash)

Usage Use this constructor if you already know the MAC’s hash (saves extra hash
computations)

public MacProof(sdsi.sexp.SexpList list)

Usage Parse an S-expression into a MacProof object. In a sense, attach the local
verify methods to the remotely-supplied data (proof text).

Methods
protected void directVerify()

Usage verify that the proof steps are indeed valid, and that they combine as
advertised to show the claimed result

public SDSIPrincipal getIssuer()
public Subject getSubject()
public Tag getTag()

proof.Proof 65

Usage This definition of MAC’ing doesn’t allow for any tag expression. One could
imagine a form that did.

public void prepareVerify(byte []object, byte []mac)

Usage Tell me the object and secret mac that the hash corresponds to, so that
verify() will work when called in the context of the rest of the proof. If what
you tell me doesn’t convince me, that’s fine; we’ll just let verify() fail later.

Class NameLeftMonotonicity

public class NameLeftMonotonicity
extends proof.Proof

Proof of a conclusion that depends upon the left-monotonicity property of names,
Axiom E17.

Constructors
public NameLeftMonotonicity(proof.Proof p0, sdsi.sexp.SexpString []suffixNames)

Usage Construct a new proof from a premise (B ⇒ A) and the string of suffixes to
append to both principals. Notice that you can supply a string of name
suffixes, so that this single proof step collapses a series of n applications of
Axiom E17.

public NameLeftMonotonicity(sdsi.sexp.SexpList list)

Usage Parse the proof out of an S-Expression.

Methods
protected SDSIPrincipal concatenateName(sdsi.SDSIPrincipal p)
protected void directVerify()

Usage verify that the proof steps are indeed valid, and that they combine as
advertised to show the claimed result

public Proof getChildProof(int i)
public SDSIPrincipal getIssuer()
public Subject getSubject()
public Tag getTag()
protected void setupIssuerSubject()
public Proof substituteProof(int i, proof.Proof subProof)

Class Proof

public abstract class Proof
extends sdsi.SDSIObject

The abstract superclass of the “self-verifying” proofs. When a server receives a
proof from a client, it arrives as a SPKI (sdsi) S-expression that gets parsed into a

proof.Proof 66

Proof class. The class file is loaded locally (so that the client cannot fool the server
by sending a proof with a verify() { return true; } method).

The server can ask a proof if its conclusion is valid, or if the proof is valid and it
supports a proposed statement.

Constructors
public Proof()

Methods
protected abstract void directVerify()

Usage Verify that the proof steps are indeed valid, and that they combine as
advertised to show the claimed result. If the method returns without throwing
InvalidProofException, the proof was valid. Subclasses should implement this
method to verify the statement they represent.

public Proof getChildProof(int i)

Usage If this proof contains an ith subproof, return it. (i>=0)

public abstract SDSIPrincipal getIssuer()

Usage who this proof ultimately speaks for

public abstract Subject getSubject()

Usage the subject is the principal who stands to gain from this proof, for the proof
shows that he speaks for the issuer (possibly with restrictions).

public abstract Tag getTag()

Usage the tag represents the set of requests this proof is valid for (SPKIwise, this
is the output of AIntersect.)

public static Proof parse(sdsi.sexp.SexpList l)

Usage Parse the given SexpList into a Proof object.

Exceptions

sdsi.sexp.SexpParseException - if l does not represent a Proof we
understand.

public List preorderCertificates()

Usage Return a list of the certificates involved in this proof in preorder-traversal
order. Used in proof digestion.

public List preorderIssuers()

Usage Return a list of the issuers involved in this proof in preorder-traversal order.
Used in proof digestion.

proof.Prover2 67

public List preorderProofs()

Usage Return a list of the subproofs (lemmas) involved in this proof in
preorder-traversal order. Used in proof digestion.

public Proof substituteProof(int i, proof.Proof subproof)

Usage Substitute the ith subproof of this proof with the supplied one, returning a
new copy of myself (don’t change me). The idea is that we’re substituting
identical lemmas with different internal state (already-verified objects
representing the same statement). If we do this substitution after verifying
this object, then we should either clear our own verified flag, or ensure at
substitution time that the new proof’s conclusion is the same as the one we’re
substituting out.

public void verify()

Usage Verify that the conclusion this object claims is valid in the logic of restricted
delegation.

public void verify(sdsi.SDSIPrincipal issuer, sdsi.Subject subject, sdsi.Tag tag)

Usage Verify that the proof is valid, and that it shows that the parameter subject
speaks for the parameter issuer regarding the parameter tag.

Class ProofCache

public class ProofCache
extends java.lang.Object

An cache of proofs on the server side of a connection. It can replace new proofs with
older proofs that are identical in SDSI representation but which have interesting
transient data, such as the bit that indicates that we already verified the proof.
Useful for servers caching and verifying proofs from clients.

Constructors
public ProofCache()

Methods
public int size()
public Proof substitute(proof.Proof parent)

Class Prover2
public class Prover2
extends java.lang.Object

This class is a utility for programs acting as Snowflake clients. It manages a
collection of delegations, including authority over certain principals. This tool is
described in the dissertation in Section 9.4.

proof.Prover2 68

When I say “principal,” I mean it as in Snowflake (just about anything even
remotely principal-like), not as in SDSI, where only SDSIPrincipals qualify.

Fields
public boolean saveCreatedProofs

• A flag to turn off when doing a certain performance evaluation, the RMI/ssh
experiment, where I want to know how long it takes to create the
authorization.

public IndentWriter iw
• used for debugging proof lookup

Constructors
public Prover2(java.lang.String dirname)

Usage Create a new Prover2 tool.

Methods
public Proof createAuth(sdsi.Subject subject, sdsi.SDSIObject issuer)

Usage Create a delegation that shows that subject ⇒ issuer.

public Proof createAuth(sdsi.Subject subject, sdsi.SDSIObject issuer,
sdsi.SDSIPublicKey publicKey)

Usage Create a delegation that shows that subject ⇒ issuer.

Parameters
publicKey - subject is in fact this public key.

public Proof createAuth(sdsi.Subject subject, sdsi.SDSIObject issuer, sdsi.Tag
tag, sdsi.SDSIPublicKey publicKey)

Usage Create a delegation that shows that subject
tag⇒ issuer.

public void digestProof(proof.Proof p)

Usage When someone sends us a proof, this method takes it all apart and saves all
the certificates. We can use the digested parts later to build our own proof.

public void dumpProofs()

Usage Dump the proofs cached in the prover. A debugging method.

public Set getFinalPrincipals()

Usage Get the set of principals we consider “final:” those public keys for which we
control the corresponding private key, for example, or any other principal that
we can cause to say something.

proof.Prover2 69

public Hash getIdentityHash()

Usage Get a hash abbreviation for my identity.

public SDSIPrivateKey getIdentityPrivateKey()

Usage Return the private key corresponding to my identity, if my identity is a
public key.

public SDSIPublicKey getIdentityPublicKey()

Usage Get some unique notion of identity, by which the caller means he hopes
there aren’t multiple public keys I control.

public String getName(java.lang.Object obj)

Usage Get a name, secure or mnemonic, for the object. Used for debugging, since
it can help you tell keys apart more easily than you might with a hex dump.
Not useful for production use, since mnemonic names are easily faked. That’s
the point of secure names.

public List getNames(sdsi.SDSIPrincipal subject, int numDesired)

Usage Finds every possible name for p rooted in a public key for which we have the
private key. Algorithm is BFS, so that we can stop once we find a few good,
short names.

Parameters
numDesired - the maximum number of name chains to return. Specify -1 to

completely explore the name graph.

public Set getPrincipals()

Usage Get the entire set of principals currently known to this Prover.

public Set getPrincipalsByType(java.lang.Class c)

Usage Get the set of principals that belong to class c.

public SDSIPrivateKey getPrivateKeyForPublic(sdsi.SDSIPublicKey publicKey)

Usage Map a public key to a private key.

public Proof getProof(sdsi.SDSIPrincipal issuer, sdsi.Subject subject, sdsi.Tag
authTag)

See Also

• proof.Prover2.getProofString(SDSIPrincipal,Subject,Tag)

public String getProofName(proof.Proof proof, boolean longForm)

Usage Produce a nice string representation for a proof’s conclusion.

proof.Prover2 70

Parameters
longForm - if true, principals are followed by the class that defines them, and

the restriction tag is printed.

public Set getProofs()

Usage Get the entire set of proofs currently known to this Prover.

public String getProofString(sdsi.SDSIPrincipal issuer, sdsi.Subject subject,
sdsi.Tag authTag)

Usage find a proof that the request speaks for the issuer (ultimate server)
regarding all of the statements in authTag.

Algorithm is a BFS over the graph of proofs.

When we find a principal for which we hold the corresponding private key,
we’re done. (We could find any principal that we could ”make” equivalent to
the subject, but short of creating a new certificate to do so, which takes a
private key, the only current alternative would be to find the exact request
itself.)

public SDSIPublicKey getPublicKeyForHash(sdsi.Hash hash)

Usage Map a hash back to a public key.

public SDSIPublicKey getPublicKeyForPrincipal(sdsi.SDSIObject obj)

Usage Map a public key, hash, or SDSIKeyPair to a public key object.

public SDSIPublicKey getPublicKeyForPrivate(sdsi.SDSIPrivateKey privateKey
)

Usage Map a private key to the corresponding public key.

public String getSecureName(java.lang.Object obj)

Usage Get a secure name for the object. That’s a name defined with SPKI name
bindings relative to a principal we consider final. A final principal might be
one we control, like a public key for which we have the corresponding private
key.

public String getShortClassName(java.lang.Object o)

Usage Used by getName().

public SDSIObject introduceObject(sdsi.SDSIObject so)

Usage Introduce an SDISObject to this Prover. If it’s a proof or delegation, it will
get cached and used when a proof is requested later.

public SDSIObject introduceObject(sdsi.SDSIObject so, boolean persist)

proof.SDSIKeyPair 71

Usage Introduce an SDISObject to this Prover. If it’s a proof or delegation, it will
get cached and used when a proof is requested later.

Parameters
persist - If true, the object will also be saved in the cache dir specified in

the constructor.

public void introducePrincipal(sdsi.SDSIObject so)
Usage Introduce a principal. Useful, among other times, for introducing a public

key when the Prover might encounter proofs that supply only hashes of the
key.

public boolean isFinal(sdsi.SDSIObject s)
Usage Return true if the subject is one for which we control the private key here.

public void loadCache()
Usage Pulls in any files in the directory dirname that have changed since we last

checked the directory.

public static void main(java.lang.String []args)
Usage A test/debug function. Tries to name all of the objects loaded into the

cache.

public Proof makeProof(sdsi.SDSIPrincipal issuer, sdsi.Subject subject, sdsi.Tag
authTag)
Usage Calls getProof(), but if proof doesn’t exist, will look for a proof for an issuer

we control, and sign off on a delegation for the last step subject ⇒ myIssuer.

public static String staticGetName(java.lang.Object obj)
Usage Get a debugging name for an object, even if you have no Prover available.

public void stats()
Usage Print out some simple stats on the objects this Prover has collected.

Class QuotingRule
public class QuotingRule
extends proof.Proof

Constructors
public QuotingRule(sdsi.Quoting issuer, sdsi.Subject subject)
public QuotingRule(sdsi.sexp.SexpList list)

Methods
protected void directVerify()
Usage verify that the proof steps are indeed valid, and that they combine as

advertised to show the claimed result

public SDSIPrincipal getIssuer()
public Subject getSubject()
public Tag getTag()

proof.TrivialProof 72

Class SDSIKeyPair

public class SDSIKeyPair
extends sdsi.SDSIObject

An S-expression that holds both a private and a public key in the same file, so it’s
really easy to tell that they go together. This is a convenient way to package private
keys so that we don’t lose track of the public key that it goes with.

Constructors
public SDSIKeyPair(sdsi.SDSIPrivateKey privateKey, sdsi.SDSIPublicKey
publicKey)
public SDSIKeyPair(sdsi.sexp.SexpList l)
Usage Parse the given SexpList into a SDSIKeyPair object.

Methods
public SDSIPrivateKey getPrivateKey()
public SDSIPublicKey getPublicKey()

Class SignedCertificateProof

public class SignedCertificateProof
extends proof.Proof

This proof verifies a “self-evident statement” of the public key signature variety.
That is, it verifies

A says B
T⇒ A

when A is a public key and we have A’s signature on an S-expression that says

B
T⇒ A.

@todo This proof includes belief in an application of the handoff rule. This is one
place where we’d decide how often we believed in it.

Constructors
public SignedCertificateProof(sdsi.sexp.SexpList list)
public SignedCertificateProof(sdsi.SignedCertificate sc)
public SignedCertificateProof(sdsi.SignedCertificate sc, proof.Proof handoff)

Methods
protected void directVerify()
Usage verify that the proof steps are indeed valid, and that they combine as

advertised to show the claimed result

public Proof getChildProof(int i)
public SDSIPrincipal getIssuer()
public Subject getSubject()
public Tag getTag()
public Proof substituteProof(int i, proof.Proof subProof)

proof.InvalidProofException 73

Class TrivialProof

public class TrivialProof
extends proof.Proof

This proof proves that a principal speaks for itself (A = A). It’s kind of silly to reify
this as an explicit object, but it avoids putting potentially-confusing special-case
code in the proof verifier

Constructors
public TrivialProof(sdsi.SDSIPrincipal thePrincipal)
public TrivialProof(sdsi.sexp.SexpList list)

Methods
protected void directVerify()

Usage verify that the proof steps are indeed valid, and that they combine as
advertised to show the claimed result

public SDSIPrincipal getIssuer()
public Subject getSubject()
public Tag getTag()

Class TwoStepProof
public class TwoStepProof
extends proof.Proof

This proof verifies a proof involving restricted transitive delegation, Theorem E6,
that subsumes Axiom E1 as well.

Constructors
public TwoStepProof(proof.Proof p0, proof.Proof p1)

Usage Construct a two-step proof from two appropriate lemmas.

public TwoStepProof(sdsi.sexp.SexpList list)

Usage Parse a proof from an S-Expression.

Methods
protected void directVerify()

Usage verify that the proof steps are indeed valid, and that they combine as
advertised to show the claimed result

public Proof getChildProof(int i)
public SDSIPrincipal getIssuer()
public Subject getSubject()
public Tag getTag()
public Proof substituteProof(int i, proof.Proof subProof)

proof.InvalidProofException 74

Exceptions

Interface InvalidProofException
public class InvalidProofException
extends java.lang.Exception

The exception thrown by Proof.verify if the proof is not valid.

Constructors
public InvalidProofException(java.lang.String s)

Package relational

This package implements a relational database. It is stored in-core, so persistence
must be supplied with some external mechanism; may I suggest Icee?

The database is very tightly bound to Java types. It started as a simple way to
index “back pointers” rather than storing lists of back pointers explicitly in objects.
The more I added relational-like features to it, though, the more I realized that
relational semantics are enough significantly different than object semantics that the
two do not blend as well as one would hope.

The database supports indexing for fast lookups.

75

relational.ResultSet 76

Interfaces

Interface Database
public interface Database
extends java.rmi.Remote

A database can do select-like operations. Relational objects need to work with the
database to get created, so the database can track them.

Methods
public void createIndex(relational.FieldDescriptor fd)

Usage Hint to the database the fields you want indexed

public ResultSet evaluateSelect(relational.Select s)

Usage Every database can perform the select() operation. It’s neat-o because it
can ”invert” pointers.

public void insert(relational.Relational ro)

Usage All Relational objects in ros[] should be of the same class. ros.length should
be greater than 0. (duh)

public void insert(relational.Relational []ros)
public void noop()

Usage Do nothing. Verifies that the database server is accessible.

public void shutdown()
public void update(relational.Relational ro)
public void update(relational.Relational []ros)

Interface OrderBy

public interface OrderBy
extends java.io.Serializable

A clause to attach to a select statement to request ordering.

Methods
public ResultSet order(relational.ResultSet rs)

Usage Database calls this to sort the ResultSet rs before returning it to the caller.

Interface ResultSet

public interface ResultSet
extends java.io.Serializable

A ResultSet is an evaluated query or a table – a static list of rows.

Methods

relational.BasicRow 77

public ColumnSpec getColumnSpec()
public Enumeration getEnumeration()
public FromClause getFromClause()
public Vector getVector()
public boolean hasMember(relational.Row o)
public Iterator iterator()
public int size()

Interface Row
public interface Row
extends java.io.Serializable

A Row packages up objects that form a row of results; it can be accessed by a
ColumnSpec requesting specific columns.

Methods
public ColumnSpec getColumnSpec()
public Object getField(relational.FieldDescriptor fd)
public Object getField(int tableIndex, relational.FieldDescriptor fd)
public FromClause getFromClause()
public Relational getTable(java.lang.Class c)
public Relational getTable(relational.FromClause fc, int table)
public Relational getTable(java.lang.String tableName)
public boolean supports(relational.ColumnSpec cs)

Classes

Class BasicRow

public class BasicRow
extends java.lang.Object
implements Row

A simple (inefficient for network transfer) implementation of Row – it stores every
object that has a field referenced by the columnspec.

(A more efficiently serializable implementation would store only the necessary fields
/ primary keys.)

Constructors
public BasicRow(relational.FromClause fromClause, relational.Relational []data)
public BasicRow(relational.FromClause fromClause, relational.Row row, int index,
relational.Relational oneMore)

Methods

relational.ColumnSpec 78

public boolean equals(java.lang.Object o)
public ColumnSpec getColumnSpec()
public Object getField(relational.FieldDescriptor fd)
public Object getField(int tableIndex, relational.FieldDescriptor fd)
public FromClause getFromClause()
public Relational getTable(java.lang.Class c)
public Relational getTable(relational.FromClause fc, int table)
public Relational getTable(java.lang.String tableName)
public int hashCode()
public boolean supports(relational.ColumnSpec cs)

Class CheckDatabase

public class CheckDatabase
extends java.lang.Object

See if an RMI Database is accessible by trying to invoke its noop method. Written
when I was trying to get SSL to work.

Constructors
public CheckDatabase()

Methods
public static void main(java.lang.String []argv)

Class ClumpRelational

public abstract class ClumpRelational
extends relational.Relational

ClumpRelational Objects in this class have primary keys that encode their database
membership, saving four bytes per class member.

Constructors
public ClumpRelational(relational.Database db)

Methods
public Database getDatabase()
protected static void growMap(int pastHere)

Class ColumnSpec
public class ColumnSpec
extends java.lang.Object
implements java.io.Serializable

A ColumnSpec is an ordered list of unique columns of a FromClause.

Constructors
public ColumnSpec()

Methods

relational.FieldDescriptor 79

public static ColumnSpec create(relational.FromClause fromClause, int []indices,
relational.FieldDescriptor []fields)
public static ColumnSpec create(relational.FromClause fromClause,
java.lang.String []names, relational.FieldDescriptor []fields)
public int findField(relational.FieldDescriptor fieldIdent)
public Class getDeclaringClass(int field)
public FieldDescriptor getField(int field)
public Object getField(relational.Row source, int field)
public FromClause getFromClause()
public int getNumFields()
public int getTableIndex(int field)
public String getTableName(int field)
public Class getType(int field)
public boolean supports(relational.FieldDescriptor fieldIdent)
public String toString()

Class DirectRelational

public abstract class DirectRelational
extends relational.Relational

The Database that serves a DirectRelational object (row) is stored as a reference in
a field along with each such object.

Constructors
public DirectRelational(relational.Database db)

Methods
public Database getDatabase()
public void setDatabase(relational.Database db)

Class FieldDescriptor
public abstract class FieldDescriptor
extends java.lang.Object
implements java.io.Serializable

An object that identifies a field of a “table” (class). These come in a few varieties.

Constructors
public FieldDescriptor()

Methods
public static FieldDescriptor get(java.lang.Class c)

Usage A field that refers to the object defining the row

public static FieldDescriptor get(java.lang.reflect.Field f)
public static FieldDescriptor get(java.lang.reflect.Field f, java.lang.Class c)

relational.FieldDescriptorPrimary 80

Usage Field descriptor for field f in class c (even if f is a member of a superclass of
c)

public abstract Object get(relational.Row source)
public abstract Class getDeclaringClass()

Usage which table declares this field

public static FieldDescriptor getPrimaryKey(java.lang.Class c)
public abstract Class getType()

Usage which table (Class) this field’s value belongs to

Class FieldDescriptorField
public class FieldDescriptorField
extends relational.FieldDescriptor

Describes a regular field of a class.

Constructors
public FieldDescriptorField()

Methods
public boolean equals(java.lang.Object o)
public static FieldDescriptor get(java.lang.reflect.Field f, java.lang.Class c)
public Object get(relational.Row source)
public Class getDeclaringClass()
public Field getField()
public Class getType()
public String toString()

Class FieldDescriptorForeign
public class FieldDescriptorForeign
extends relational.FieldDescriptor

Describes a “foreign field,” that is, a reference to another class.

Constructors
public FieldDescriptorForeign()

Methods
public boolean equals(java.lang.Object o)
public static FieldDescriptor get(java.lang.reflect.Field f)
public Object get(relational.Row source)
public Class getDeclaringClass()
public Class getType()
public String toString()

relational.FromClause 81

Class FieldDescriptorPrimary

public class FieldDescriptorPrimary
extends relational.FieldDescriptor

Describes the “primary field” for this class; that is, the reference to this object
itself. Used in queries that specify that one object points to another: the first
object’s foreign field must match the second object’s primary field.

Constructors
public FieldDescriptorPrimary()

Methods
public boolean equals(java.lang.Object o)
public static FieldDescriptor get(java.lang.Class c)
public Object get(relational.Row source)
public Class getDeclaringClass()
public Class getType()
public String toString()

Class FieldDescriptorReference

public class FieldDescriptorReference
extends relational.FieldDescriptor

Constructors
public FieldDescriptorReference()

Methods
public boolean equals(java.lang.Object o)
public static FieldDescriptor get(java.lang.Class c)
public Object get(relational.Row source)
public Class getDeclaringClass()
public Class getType()
public String toString()

Class FromClause
public class FromClause
extends java.lang.Object
implements java.io.Serializable

A FromClause identifies an ordered list of tables, possibly by name. Used in a select
statement just as FROM is used in SQL.

Constructors
public FromClause()

Methods
public static FromClause create(java.lang.String []names, java.lang.Class []tables)
public static FromClause create(java.lang.String name, java.lang.Class table)

relational.InternalDatabase 82

public static FromClause createAnonymous(java.lang.Class c)
protected void ensureUniqueNames()
public boolean equals(java.lang.Object o)
public int getIndex(java.lang.Class table)
public int getIndex(java.lang.String name)
public String getName(java.lang.Class t)
public String getName(int i)
public ColumnSpec getNaturalColumnSpec()
public int getNumTables()
public Class getTable(int i)
public Relational getTableFromRow(relational.Row source, int tableIndex)
public Relational getTableFromRow(relational.Row source, java.lang.String name)
public boolean hasTable(java.lang.Class table)
public boolean subsetOf(relational.FromClause superfc)
public String toString()
public static FromClause trimOne(relational.FromClause fc)
public static FromClause union(relational.FromClause fca, relational.FromClause
fcb)

Class InternalDatabase

public class InternalDatabase
extends java.rmi.server.UnicastRemoteObject
implements Database

My implementation of the Database interface. Supports select statements and
indexing.

@todo An implementation of Relational needs a way to always be able to invert
any pointer. One really crummy mechanism is to keep track of all Relationals
of each type, and when asking for the pointers from a given type, iterate
through the list of existing guys.

@todo Some small issues with references and never garbage collecting are sure to
show up.

@todo subclasses of Relational classes don’t work yet.

Constructors
public InternalDatabase()
public InternalDatabase(ssh.SSHContext context, sdsi.SDSIPrincipal serverIssuer
)

Usage Create an InternalDatabase object that is accessed via RMI-over-SSH.

Parameters
context - The SSHContext object to use with the SSH connection.

public InternalDatabase(COM.claymoresystems.ptls.SSLContext context)

relational.InternalDatabase 83

Usage Create an InternalDatabase object that is accessed via RMI-over-SSL. [I
couldn’t get RMI-over-SSL working reliably, so I switched to my SSH
implementation.]

Parameters
context - The SSLContext object to use with the SSL connection.

Methods
public ResultSet boundAnd(relational.WhereAnd w, relational.FromClause fc,
relational.ResultSet input)
public ResultSet boundConstant(relational.WhereConstant wc,
relational.FromClause fc, relational.ResultSet input)
public ResultSet boundIn(relational.WhereIn win, relational.FromClause fc,
relational.ResultSet input)
public ResultSet boundingSuperset(relational.Where w, relational.FromClause fc,
relational.ResultSet input)

Usage Optimization for Where clauses. Given a Where clause, the FromClause it is
scoped over, and some input superset, (quickly) compute a (possibly
not-tight) superset of the possible matching rows fitting the FromClause.

The superset can be a loose bound in two ways: First, in the obvious way, it
can explicitly list more rows that actually match the request. Second, it can
have a weaker type (fromClause). So if fc=tableA,tableB, but the superset
ResultSet’s getFromClause()=tableA, then the superset contains the join of its
rows with every row in tableB, which is a shorthand for a lot of rows.

The latter loose bound is used when computing joins, in fact. One
whereClause finds a condition on one table, and expresses it as described
above (compactly, listing only the matching rows of tableA). Then the
whereJoin() clause can index tableB on the joined column of tableA, filling
out the type (fromClause) of the bounding set, and therefore making the
bound tighter (because it doesn’t end up listing every possible row of tableB
with every row of the input superset.)

Often these routines compute an actually-tight superset, at least for the
returned fromClause. However, right now the semantics is that whatever
results are returned, they are first expanded to the full requested fromClause
(by joining in unmentioned tables), then every row of the result is forced
through the where expression to verify that it matches.

public ResultSet boundJoin(relational.WhereJoin wj, relational.FromClause fc,
relational.ResultSet input)

relational.NumericComparator 84

public ResultSet boundLiteral(relational.WhereLiteral w, relational.FromClause
fc, relational.ResultSet input)
public ResultSet boundNot(relational.WhereNot wnot, relational.FromClause fc,
relational.ResultSet input)
public ResultSet boundOr(relational.WhereOr wor, relational.FromClause fc,
relational.ResultSet input)
public void createIndex(relational.FieldDescriptor fd)

Usage iterates over all members of the class(es) that declare field, indexing what
they point to.

protected Hashtable createIndex(relational.FieldDescriptor fd,
relational.ResultSet rs)
protected Hashtable createIndex(relational.FieldDescriptor fd,
relational.ResultSet rs, relational.LikeHash lh)
public ResultSet evaluateSelect(relational.Select s)
protected ResultSet fillByJoin(relational.ResultSet rsi, relational.FromClause fc)
protected ResultSet getUniverse(java.lang.Class c, java.lang.String fromName)
protected ResultSet getUniverse(relational.FromClause fc)
public void indexOneField(java.util.Hashtable index, relational.Relational r,
java.lang.Object target)
public void indexOneValue(java.util.Hashtable index, relational.Relational r,
java.lang.Object target)
protected void indexSome(relational.Relational []ros)
public void insert(relational.Relational ro)
public void insert(relational.Relational []ros)
protected boolean isValid(relational.Row ro)
public void noop()
public ResultSet primeFromIndexWE(relational.WhereEquals we, java.lang.String
fromName)
public ResultSet primeFromIndexWL(relational.WhereLike wl, java.lang.String
fromName)
public static Vector select(relational.Database db, java.lang.Class fromClass,
relational.Where where)

Usage Utility method. Finds all objects of fromClass that match the where clause.
This can be used to follow pointers backwards, by using a where clause that
checks for a data member that points at the target data item.

public void shutdown()
public void update(relational.Relational ro)
public void update(relational.Relational []ros)

relational.Relational 85

Class NumericComparator

public class NumericComparator
extends java.lang.Object
implements java.util.Comparator, java.io.Serializable

A numeric Comparator for sorting.

Constructors
public NumericComparator()

Methods
public int compare(java.lang.Object o1, java.lang.Object o2)

Class OrderByOne

public class OrderByOne
extends java.lang.Object
implements OrderBy

Sorts results by a single column. (Versus a hypothetical sort that sorts by multiple
columns, in priority order.)

Constructors
public OrderByOne(relational.FieldDescriptor fd)
public OrderByOne(relational.FieldDescriptor fd, java.util.Comparator fieldComp)

Methods
public static OrderBy natural(relational.FieldDescriptor fd)
public ResultSet order(relational.ResultSet rs)

Class Relational
public abstract class Relational
extends java.lang.Object
implements Row

All objects that can be accessed relationally must subclass this abstract class. They
all have an “update” method that makes their data “persistent” (although it may
be already), and ensures that it is indexed.

Note that this is a “Row.” A Relational instance is a single row from a single table
(Relational class); a compound row made up from multiple tables joined would be
some other implementation of Row (like BasicRow).

Serializable Fields
public Object primaryKey

Constructors
public Relational()

Methods

relational.ResultSetNarrow 86

public ColumnSpec getColumnSpec()
public abstract Database getDatabase()
public Object getField(relational.FieldDescriptor fd)
public Object getField(int tableIndex, relational.FieldDescriptor fd)
public FromClause getFromClause()
public Relational getTable(java.lang.Class c)
public Relational getTable(relational.FromClause fc, int table)
public Relational getTable(java.lang.String tableName)
public void insert()
public Object resolveForeignKey(java.lang.Class c, java.lang.Object key)
public void setPrimaryKey(java.lang.Object pk)
public boolean supports(relational.ColumnSpec cs)
public void update()

Class ResultSetImpl

public class ResultSetImpl
extends java.lang.Object
implements ResultSet

A list of rows that implement a complete FromClause. If you want rows that
perhaps only hold (or report) a couple of specific columns, you need a
ResultSetNarrow.

Constructors
public ResultSetImpl(relational.FromClause fc)
public ResultSetImpl(relational.FromClause fc, java.util.Collection c)
public ResultSetImpl(relational.FromClause fc, java.util.Vector v)
public ResultSetImpl(relational.ResultSet rs)

Methods
public void addMember(java.lang.Object o)
public static ResultSet cross(relational.ResultSet ra, relational.ResultSet rb)
public static ResultSet cross(relational.ResultSet ra, relational.ResultSet rb,
relational.FromClause outputShape)
protected void fillCache()
public ColumnSpec getColumnSpec()
public Enumeration getEnumeration()
public FromClause getFromClause()
public Vector getVector()
protected Object hashKeyForRow(relational.Row row)
public boolean hasMember(relational.Row o)
public Iterator iterator()
public void removeMember(java.lang.Object o)
public int size()

relational.RowTools 87

Class ResultSetNarrow

public class ResultSetNarrow
extends java.lang.Object
implements ResultSet

A ResultSetNarrow holds results shaped into a specific ColumnSpec, not just a
FromClause.

Constructors
public ResultSetNarrow(relational.ColumnSpec cs)
public ResultSetNarrow(relational.ColumnSpec cs, relational.ResultSet rs)
public ResultSetNarrow(relational.ResultSet rs)

Methods
public void addMember(java.lang.Object o)
protected static ColumnSpec alignColumnSpec(relational.ColumnSpec cs,
relational.FromClause fc)
protected void fillCache()
public ColumnSpec getColumnSpec()
public Enumeration getEnumeration()
public FromClause getFromClause()
public Vector getVector()
public boolean hasMember(relational.Row o)
public boolean hasSingleton(java.lang.Object o)
public Iterator iterator()
public void removeMember(java.lang.Object o)
public int size()

Class RMIDatabase

public class RMIDatabase
extends java.lang.Object

A Unix command-line interface to instantiate an InternalDatabase and bind it to a
well-known name in the localhost’s RMIRegistry.

Constructors
public RMIDatabase()

Methods
public static void main(java.lang.String []args)

Class RowTools
public class RowTools
extends java.lang.Object

Tools used by classes that implement Row.

Constructors

relational.SSHDatabase 88

public RowTools()

Methods
public static ColumnSpec getColumnSpec(java.lang.Object o)

Class Select
public class Select
extends java.lang.Object
implements java.io.Serializable

A select statement.

Constructors
public Select(java.lang.Class wholeTable, relational.Where whereClause)
public Select(relational.ColumnSpec columnSpec, relational.FromClause
fromClause, relational.Where whereClause)
public Select(relational.ColumnSpec columnSpec, relational.FromClause
fromClause, relational.Where whereClause, boolean distinct)
public Select(relational.ColumnSpec type, relational.Where whereClause)
public Select(relational.FieldDescriptor oneField, relational.Where whereClause)
public Select(relational.Select s)

Methods
public ResultSet evaluate(relational.Database db)
public ColumnSpec getColumnSpec()
public FromClause getFromClause()
public Where getWhere()
protected void init(relational.ColumnSpec columnSpec, relational.FromClause
fromClause, relational.Where whereClause, boolean distinct)
public ResultSet order(relational.ResultSet rs)
public void setDistinct(boolean distinct)
public void setOrderBy(relational.OrderBy ob)
public String toString()

Class SSHDatabase
public class SSHDatabase
extends java.lang.Object

Creates a remotely-accessible Database that is accessed using Snowflake-authorized
RMI-over-SSH.

Constructors
public SSHDatabase()

Methods
public static void main(java.lang.String []args)

Usage Unix command-line interface.

relational.Where 89

Class SSLDatabase

public class SSLDatabase
extends java.lang.Object

Creates a remotely-accessible Database that is accessed using RMI-over-SSL
(PureTLS). (No particular client authorization mechanism yet – it turned out that I
could never get SSL over RMI working well.)

Constructors
public SSLDatabase()

Methods
public static void main(java.lang.String []args)

Class TableDescriptor

public class TableDescriptor
extends java.lang.Object
implements java.io.Serializable, java.lang.Comparable

Description of a table (class), including a name to identify which reference to the
table we are talking about. Used in SQL-like select statements that refer to the
same table twice, for example, when examining tree or other self-referential
structures. Used to build FromClauses.

Constructors
public TableDescriptor(java.lang.String name, java.lang.Class table)

Methods
public int compareTo(java.lang.Object o)
public boolean equals(java.lang.Object o)
public int hashCode()

Class Where

public abstract class Where
extends java.lang.Object
implements java.io.Serializable

The abstract Where clause used to specify select statements.

Constructors
public Where()

Methods
public static Where always()
public static Where and(relational.Where w1, relational.Where w2)
public Object clone()
public static Where equals(relational.FieldDescriptor fd, java.lang.Object o)
public abstract Object getChild(int index)

relational.WhereEquals 90

public abstract int getChildCount()
public String getShortName()
public abstract boolean includes(relational.Row ro, relational.Database db)
public String indentedString(int level)
public abstract void setChild(int index, java.lang.Object child)

Class WhereAlways
public class WhereAlways
extends relational.Where

The null Where clause that accepts all rows specified by the FromClause.
@classConcise true

Constructors
public WhereAlways()

Class WhereAnd
public class WhereAnd
extends relational.WhereBinary

Conjunction of two other where clauses.
@classConcise true

Constructors
public WhereAnd()
public WhereAnd(relational.Where w1, relational.Where w2)

Class WhereBinary

public abstract class WhereBinary
extends relational.Where

Abstract superclass for Where clauses with two subclauses (binary operators).
@classConcise true

Constructors
public WhereBinary()
public WhereBinary(relational.Where w1, relational.Where w2)

Class WhereConstant
public class WhereConstant
extends relational.Where

Used for literal comparisons like (WHERE field = ’foo’).
@classConcise true

Constructors
public WhereConstant(java.lang.String tableName, relational.Relational constant)

relational.WhereLiteral 91

Class WhereEquals

public class WhereEquals
extends relational.WhereLiteral

Test for equality between two fields (neither operand is a literal).

@classConcise true

Constructors
public WhereEquals(relational.FieldDescriptor fd, java.lang.Object o)

Class WhereIn

public class WhereIn
extends relational.Where

Test for membership of a field in the list of entries (ResultSet) of a subquery. Like
SQL’s SELECT ... WHERE X IN (SELECT ...)

@classConcise true

Constructors
public WhereIn()
public WhereIn(relational.FieldDescriptor fd, relational.Select subquery)

Class WhereJoin

public class WhereJoin
extends relational.Where

Join two tables together where two fields are equal.

@classConcise true

Constructors
public WhereJoin(relational.FieldDescriptor f1, relational.FieldDescriptor f2)

Class WhereLike

public class WhereLike
extends relational.WhereLiteral

Test where a substring appears in a field.

@classConcise true

Constructors
public WhereLike(relational.FieldDescriptor fd, java.lang.String s)
public WhereLike(relational.FieldDescriptor fd, java.lang.String s, boolean
caseSensitive, boolean startsWith, boolean endsWith)

relational.WhereOr 92

Class WhereLiteral

public abstract class WhereLiteral
extends relational.Where

Superclass for comparisons that involve a single field and another literal operand.

Constructors
public WhereLiteral()

Methods
public abstract FieldDescriptor getFieldDescriptor()

Class WhereNot
public class WhereNot
extends relational.Where

Invert the sense of a where subclause.

@classConcise true

Constructors
public WhereNot()
public WhereNot(relational.Where w1)

Class WhereOr
public class WhereOr
extends relational.WhereBinary

Disjunction of two where subclauses.

@classConcise true

Constructors
public WhereOr()
public WhereOr(relational.Where w1, relational.Where w2)

Package relational.email

This package implements a relational database schema for an email database. The
schema is composed of three primary tables (classes):

• Message, an empty row that ties the body and headers together,

• Body, a row containing the body text of the document, and

• Header, a row containing a single header and its value.

In the future, the schema may be extended to support attachments or the retrieval
of “body parts” so that the entire message body does not need to be transferred in
one unit.

Properties can be attached to mail with “synthetic headers,” which are entries in
the header table with a flag set indicating that the header was not in the email as
delivered, but added after receipt by an application.

The Mailbox class is a tool that can create the schema in a Database and parse
Berkeley-style mail folders into it. The Extract class can extract messages to an
output stream. The Email class provides a Swing graphical interface on the email,
including drag-and-drop specification of query filters.

93

relational.email.ChangeEventMulticaster 94

Interfaces

Interface DisplayManager
public interface DisplayManager

An interface for classes that organize the visual elements of the email application.

Methods
public void add(javax.swing.JComponent c, java.lang.String title)
public FilterView getFilterView()
public MessageView getMessageView()
public void registerKeyboardAction(java.awt.event.ActionListener a,
java.lang.String s, javax.swing.KeyStroke k, int c)
public void setVisible(boolean state)

Classes

Class Body

public class Body
extends relational.ClumpRelational

Part of the Database schema for email. A Body row carries the body text of a
message, and connects it to a specific Message object.

Serializable Fields
public String body

public Object msg fk

Fields
public static FieldDescriptor f reference

public static FieldDescriptor f primaryKey

public static FieldDescriptor f body

public static FieldDescriptor f msg

Constructors
public Body(relational.Database db)

Methods
public Message getMsg()
public void setMsg(relational.email.Message m)

Class ChangeEventMulticaster
public class ChangeEventMulticaster
extends java.lang.Object
implements javax.swing.event.ChangeListener

This class does for senders of ChangeEvent what AWTEventMulticaster does for all

relational.email.DragTableUI 95

the other events. Maintains an immutable linked list of listeners, multicasting any
events to all listeners on the list. Bears a striking resemblance to
AWTEventMulticaster.

@classConcise true
@author Jon Howell

Constructors
protected ChangeEventMulticaster(javax.swing.event.ChangeListener a,
javax.swing.event.ChangeListener b)

Class CommandPanel

public class CommandPanel
extends javax.swing.JPanel
implements java.awt.event.ActionListener, javax.swing.event.ChangeListener

The user-interface element that captures single keystrokes to enable the user to
quickly navigate a panel of commands. Inspired by the fact that I never pull-down
menus when I use Pine.

@classConcise true

Constructors
public CommandPanel(relational.email.WherePanel wp)

Class ComposeAction

public class ComposeAction
extends javax.swing.AbstractAction

Action handler for composing a new message. Sets up the message pane to accept
new text, and configures the “send” button.

Constructors
public ComposeAction(boolean reply)

Methods
public void actionPerformed(java.awt.event.ActionEvent e)
protected String getHeader(java.lang.String name)

Class DragTableUI
public class DragTableUI
extends javax.swing.plaf.basic.BasicTableUI

Need to modify the BasicTableUI to not snarf drag events, or else it ends up
fighting with the drag-n-drop code.

@author jonh (Jon Howell)

relational.email.Email 96

Constructors
public DragTableUI()

Methods
protected MouseInputListener createMouseInputListener()
public static ComponentUI createUI(javax.swing.JComponent c)
public void dragStarted()

Class EditorComboBox

public class EditorComboBox
extends javax.swing.JComboBox
implements javax.swing.CellEditor

EditorComboBox: A CellEditor JComboBox subclass for use with Trees (and
possibly tables). Swiped from O’Reilly’s Java Swing book, ch17.

@classConcise true

Constructors
public EditorComboBox(java.lang.Object []list)

Class EditorTextField

public class EditorTextField
extends javax.swing.JTextField
implements javax.swing.CellEditor

A CellEditor.JTextField subclass for use with Trees (and possibly tables). Swiped
from O’Rielly Java Swing book, ch17.

@classConcise true

Constructors
public EditorTextField()
public EditorTextField(int w)
public EditorTextField(java.lang.String s)
public EditorTextField(java.lang.String s, int w)

Class Email

public class Email
extends java.lang.Object

Instantiate from the Unix command line a graphical application that reads and
composes email using the relational email database schema.

Constructors
public Email()

Methods

relational.email.FilterView 97

public static DisplayManager getDisplayManager()
public static void main(java.lang.String []args)

Class Extract
public class Extract
extends java.lang.Object

Extract email from the relational database and spit it out as a Berkeley-style mail
folder. Originally designed for debugging: by parsing big mailboxes into and out of
my relational databases, I could run a diff to determine if the mail had been
munged during the parse.

Constructors
public Extract()

Methods
public static Body getBody(relational.Database db, relational.email.Message m)
public static ResultSet getSortedHeaders(relational.Database db,
relational.email.Message m)
public static ResultSet getSortedMessages(relational.Database db,
relational.Where whereClause, java.lang.String sortHeader, java.lang.String
defaultValue, java.util.Comparator comp)
public static void main(java.lang.String []argv)

Class FilterModel

public class FilterModel
extends javax.swing.table.AbstractTableModel
implements javax.swing.event.ChangeListener

The model part of an MVC pattern for specifying an email filter query. The output
of the query is what appears in the index of the email GUI.

Constructors
public FilterModel()

Methods
public int getColumnCount()
public String getColumnName(int modelIndex)
public Database getDatabase()
public Message getMessageAt(int row)
public int getRowCount()
public Object getValueAt(int row, int col)
protected void loadData()
public void setDatabase(relational.Database db)
public void stateChanged(javax.swing.event.ChangeEvent e)

Class FilterView

relational.email.Header 98

public class FilterView
extends javax.swing.JPanel

The view part of the MVC pattern for the query filter control. I guess it’s also the
controller. Crazy Swing.

Constructors
public FilterView()

Methods
public Database getDatabase()
public FilterModel getModel()
public Message getSelectedMessage()
public WherePanel getWherePanel()
public void setMessageViewer(relational.email.MessageView viewer)

Class Header

public class Header
extends relational.ClumpRelational

Part of the email database schema. A Header is a single header from a message.
Headers with multi-line values are collapsed into a single Header row, so that their
value can be easily retrieved. Headers have an order field that specify the order the
headers appeared in the received message.

Synthetic headers are properties added to a message after receipt.

Serializable Fields
public String name

• The name of the header; the part before the colon.
public String whitespace

• Any whitespace that got removed between the colon and the value. Storing
this junk lets us reconstruct the original message precisely.

public String value
• The value of the header. When the header is a multi-line header, this field
contains carriage return characters.

public int order
• This field is used to reassemble headers in the order they appeared in the
message when it arrived.

public boolean synthetic
• indicates a synthetic header that didn’t really appear in the message, but
we’re encoding some private (and immutable) data in it.

public Object msg fk

relational.email.Mailbox 99

• Reference to the Message of which this header is part.
Fields
public static FieldDescriptor f reference

public static FieldDescriptor f primaryKey

public static FieldDescriptor f name

public static FieldDescriptor f whitespace

public static FieldDescriptor f value

public static FieldDescriptor f order

public static FieldDescriptor f msg

public static FieldDescriptor f synthetic

Constructors
public Header(relational.Database db)
Usage Create a header in a given Database.

Methods
public Message getMsg()
Usage Retrieve the Message to which this header belongs.

public void setMsg(relational.email.Message m)
Usage Attach this header to a given message.

Class HeaderPriorityComparator

public class HeaderPriorityComparator
extends java.lang.Object
implements java.util.Comparator

A Comparator object used to sort headers to put a set of the most important
headers at the top, followed by the remaining headers in their internally-specified
order. This sort provides a nice at-a-glance view of a message’s headers.

Methods
public int compare(java.lang.Object o1, java.lang.Object o2)
public static HeaderPriorityComparator getComp()

Class Mailbox

public class Mailbox
extends java.lang.Object

A tool for importing mail from a Berkeley-style mail folder into a relational email
database.

Constructors
public Mailbox()

Methods
public static void comment(int i, java.lang.String s)

relational.email.Message 100

Usage Debug tool.

public static Vector importMail(relational.Database db, java.io.InputStream is,
java.lang.String folderName)

Usage Parse mail from InputStream is into database db. The original folderName
is attached to each message as a synthetic header to preserve the user’s
categorization.

public static Vector importMail(relational.Database db, java.lang.String filename)

Usage Import mail given a Unix filename.

public static void main(java.lang.String []argv)

Usage Unix command-line interface to the mail import tool.

Class MenuPanel

public class MenuPanel
extends javax.swing.JPanel
implements java.awt.event.ActionListener, javax.swing.event.ChangeListener

A graphical menu that can be quickly navigated with keystrokes.

Constructors
public MenuPanel(relational.email.WherePanel wp)

Methods
public void actionPerformed(java.awt.event.ActionEvent e)
protected void addSubmenus(javax.swing.JMenu parent, relational.Where w)
public void doPendingCommand()
protected void error(java.lang.String s)
protected void errorNotDefined(java.awt.event.KeyEvent e)
protected void escapeKey()
public void requestFreeText(java.lang.String label, java.lang.Runnable runnable)
protected void setQuery(relational.Where query)
public void stateChanged(javax.swing.event.ChangeEvent e)

Class Message

public class Message
extends relational.ClumpRelational

The focal point of the email schema. A message is an empty object (just a primary
key). The Bodys and Headers refer to a Message object together form the complete
message.

Fields
public static FieldDescriptor f primaryKey

relational.email.Test 101

public static FieldDescriptor f reference

Constructors
public Message(relational.Database db)

Class MessageView
public class MessageView
extends javax.swing.JPanel

The panel that displays a single message. Can also be configured to allow an
outgoing message to be composed (edited) in the same view object.

Constructors
public MessageView()

Methods
public void loadMessage(relational.Database db, relational.email.Message m)
public void loadMessage(java.lang.String headers, java.lang.String body)
public void setComposing(boolean state)

Class State
public abstract class State
extends java.lang.Object

A state of the CommandPanel state machine. Concrete subclasses are defined inside
CommandPanel.

Constructors
public State()

Methods
public void enterState()
public abstract void keyTyped(java.awt.event.KeyEvent e)

Class SubjectComparator

public class SubjectComparator
extends java.lang.Object
implements java.util.Comparator, java.io.Serializable

Sort headers by subject. This sort honors email conventions such as Re:, so that
threads sort together with the initial message that has no Re: prefix.

Constructors
public SubjectComparator()

Methods
public int compare(java.lang.Object o1, java.lang.Object o2)
protected String trimPunct(java.lang.String s)
protected String trimRe(java.lang.String s)

relational.email.WherePanel 102

Class Test

public class Test
extends java.lang.Object

A class for debugging the Where clauses. The sophistication of the relational
database package grew as the email package asked more and more of it. Inverting
queries was surprisingly tricky.

Constructors
public Test()

Methods
public static void main(java.lang.String []args)

Class TileDisplayManager

public class TileDisplayManager
extends java.lang.Object
implements DisplayManager

A display manager that tiles the various GUI panels together in a single window.

Methods
public void add(javax.swing.JComponent c, java.lang.String title)
public FilterView getFilterView()
public MessageView getMessageView()
public void registerKeyboardAction(java.awt.event.ActionListener a,
java.lang.String s, javax.swing.KeyStroke k, int c)
public void setVisible(boolean state)

Class TransferableFilter

public class TransferableFilter
extends java.lang.Object
implements java.awt.datatransfer.Transferable

A draggable entity (Transferable) that lets the user drag Filters to and from the
tree view of the current query.

Constructors
public TransferableFilter(relational.Where where)

Methods
public Object getTransferData(java.awt.datatransfer.DataFlavor flavor)
public DataFlavor getTransferDataFlavors()
public Where getWhere()
public boolean isDataFlavorSupported(java.awt.datatransfer.DataFlavor flavor)

Class WherePanel

relational.email.WhereTreeModel 103

public class WherePanel
extends javax.swing.JPanel
implements java.awt.dnd.DropTargetListener

A panel that displays a graphical (tree) representation of the query that currently
defines the index view.

Constructors
public WherePanel()

Methods
public void addChangeListener(javax.swing.event.ChangeListener cl)
public void dragEnter(java.awt.dnd.DropTargetDragEvent e)
public void dragExit(java.awt.dnd.DropTargetEvent e)
public void dragOver(java.awt.dnd.DropTargetDragEvent e)
public void drop(java.awt.dnd.DropTargetDropEvent e)
public void dropActionChanged(java.awt.dnd.DropTargetDragEvent e)
protected void fireChangeEvent()
public Where getQuery()
public void removeChangeListener(javax.swing.event.ChangeListener cl)
public void setQuery(relational.Where query)

Class WhereTreeCellEditor

public class WhereTreeCellEditor
extends java.lang.Object
implements javax.swing.tree.TreeCellEditor

WhereTreeCellEditor.java A customized editor for my whereClause tree. swiped
from O’Reilly Java Swing ch 17.

Constructors
public WhereTreeCellEditor()

Methods
public void addCellEditorListener(javax.swing.event.CellEditorListener l)
public void cancelCellEditing()
public Object getCellEditorValue()
public Component getTreeCellEditorComponent(javax.swing.JTree tree,
java.lang.Object value, boolean isSelected, boolean expanded, boolean leaf, int row)
public boolean isCellEditable(java.util.EventObject event)
public void removeCellEditorListener(javax.swing.event.CellEditorListener l)
public boolean shouldSelectCell(java.util.EventObject event)
public boolean stopCellEditing()

Class WhereTreeModel

relational.email.WindowDisplayManager 104

public class WhereTreeModel
extends java.lang.Object
implements javax.swing.tree.TreeModel

A model that manages the WhereClause displayed in a WherePanel. Based on
ExpressionTreeModel.java from Java Swing ch 17 pg 574-5 (O’Reilly)

Constructors
public WhereTreeModel(relational.Where root)

Methods
public void addTreeModelListener(javax.swing.event.TreeModelListener tml)
protected void fireTreeNodesChanged(java.lang.Object source, java.lang.Object
[]path, int []ci, java.lang.Object []cc)
protected void fireTreeStructureChanged(java.lang.Object source,
java.lang.Object []path, int []ci, java.lang.Object []cc)
public Object getChild(java.lang.Object node, int index)
public int getChildCount(java.lang.Object parent)
public int getIndexOfChild(java.lang.Object parent, java.lang.Object child)
public Object getRoot()
public void gratuitousRootEvent()
public void insertNode(relational.Where parent, java.lang.Object node, int index)
public boolean isLeaf(java.lang.Object node)
public void refresh(javax.swing.event.TreeExpansionEvent tee)
public void removeTreeModelListener(javax.swing.event.TreeModelListener tml)
public void valueForPathChanged(javax.swing.tree.TreePath path,
java.lang.Object newValue)
protected Where whereFor(java.lang.Object newValue)

Class WindowDisplayManager
public class WindowDisplayManager
extends java.lang.Object
implements DisplayManager

A DisplayManager that organizes the GUI in separate windows. There is exactly
one command window; each Message gets a new window. I think I had in mind that
one could preserve existing queries by creating new queries in new windows (that
display the corresponding index view of the results of the query).

Methods
public void add(javax.swing.JComponent c, java.lang.String title)
public FilterView getFilterView()
public MessageView getMessageView()
public void registerKeyboardAction(java.awt.event.ActionListener a,
java.lang.String s, javax.swing.KeyStroke k, int c)

relational.email.WindowDisplayManager 105

public void setVisible(boolean state)

Package rmi

This package implements the Snowflake-over-RMI authorization protocol. It is a
very simple protocol: The server rejects any request for which it cannot verify the
client’s authority using a SfNeedAuthorizationException. The exception carries
information to the client about the proof it needs. The client’s stubs use the
InvokeHack.invoke method to invoke services; that method catches the
SfNeedAuthorizationException, uses a Prover to prove the client’s authority, and
sends the proof back to the server by calling a method on the exception object itself.
Then the invoke method retries the remote call; if it fails again, the exception is
passed back into the client code for the application programmer to handle.

106

rmi.OneLineCacheRecipient 107

Interfaces

Interface ProofRecipient
public interface ProofRecipient
extends java.rmi.Remote

The Remote interface that defines how a client communicates a proof of authority
to a server. It is used by SfNeedAuthorizationException.sendProof.

Methods
public void hereIsProof(proof.Proof proof)

Usage Give the recipient (server) a required proof of authority.

Classes

Class InvokeHack

public class InvokeHack
extends java.lang.Object

This class holds a static worker method that stubs call to automatically handle
Snowflake authority challenges from servers.

Ideally, I would replumb RMI to do this in UnicastRef.invoke(), but the current
version of RMI makes such plumbing very difficult. I chose this approach for
expediency. The necessary changes to the stub objects to use this helper method are
trivial and mechanical, so it’s not an unreasonable shortcut.

Constructors
public InvokeHack()

Methods
public static Prover2 getCurrentProver()

Usage Retrieve the Prover bound to this thread that the invoke method would use
to authorize requests.

public static Object invoke(java.rmi.server.RemoteRef lr, java.rmi.Remote obj,
java.lang.reflect.Method method, java.lang.Object []params, long opnum)

Usage This is the static worker method. It is designed to interpose on the
lr.invoke() call made by RMI stub objects. It handles authority requests
(SfNeedAuthorizationExceptions) by consulting a Prover object bound to
the current thread.

public static void setCurrentProver(proof.Prover2 prover)

Usage Bind a Prover to the current thread.

rmi.SfRemoteObject 108

Class OneLineCacheRecipient

public class OneLineCacheRecipient
extends java.rmi.server.UnicastRemoteObject
implements ProofRecipient

A ProofRecipient that accepts a single proof per subject (client) and caches one per
(server) thread, so that the next attempt at the authorized action will find the proof
and succeed. It is used by a server to cache the current authority under which a
client is operating.

It is not difficult to conceive of servers where a cache with more than one entry
would be desirable, but the exact discipline of the cache may be application-specific.
I envision a collection of cache objects that can be parameterized according to
Snowflake restriction tags to define their eviction policy.

This class is notably not of the sort that requires an SfProof to proceed. :v)

Methods
public static Proof getCachedProof(sdsi.Subject subj)

Usage The server’s checkAuth()-style method calls this method to retrieve the
cached proof for a particular subject.

public static OneLineCacheRecipient getRecipient()

Usage Get the distinguished cache object. This cheesy class defines only one such
object per JVM.

public void hereIsProof(proof.Proof proof)

Usage Give the recipient a proof of a required property. This is the Remote
method called by the client (actually by the client’s InvokeHack.invoke
helper method) to transmit a proof to the server’s cache (this thing).

public static void reconfigure(boolean state)

Usage This reconfiguration method is used by timingexp.RMIExp to turn proof
caching on and “off,” where proofs last only a single request. This mode lets
me time how long it takes to transmit the actual proof.

Class SfRemoteObject
public class SfRemoteObject
extends java.rmi.server.UnicastRemoteObject

A remote object that knows how to use the Sf proof.Prover to automatically find
and send proofs of authorization for RMI calls.

@deprecated This was an attempt to replumb RMI as I did once in the sf.rmi
package; I eventually took the shortcut described in InvokeHack.

rmi.SfNeedAuthorizationException 109

@todo NOT FOR DISTRIBUTION The code in this class is based on Sun’s
sun.rmi.server.UnicastRemoteObject class. I needed to tweak the functionality
of a specific method that Sun declared private. To do so, I had to copy the
method and tweak the code. There are ways one could imagine rewriting the
class binary to accomplish the same task without distributing something very
close to Sun’s code.

@classSummaryOnly true

Exceptions

Interface SfNeedAuthorizationException
public class SfNeedAuthorizationException
extends java.lang.RuntimeException

This exception is the message sent from server to client in response to a request for
which the server has no proof of the client’s authority. It includes

• the identity of the required issuer principal,
• the subject that tried to make the request,
• a minimum restriction tag,

• a textual description of the error, and
• a ProofRecipient object where the client’s proof can be sent before it retries
its request. The sendProof method is the client’s interface to this operation.

Constructors
public SfNeedAuthorizationException(sdsi.SDSIPrincipal issuer, sdsi.Subject
subject, sdsi.Tag tag, rmi.ProofRecipient proofRecipient)
public SfNeedAuthorizationException(sdsi.SDSIPrincipal issuer, sdsi.Subject
subject, sdsi.Tag tag, rmi.ProofRecipient proofRecipient, java.lang.String
description)

Methods
public SDSIPrincipal getIssuer()

Usage Retrieve the identity of principal over which the proof must show authority
(the issuer).

public Subject getSubject()

Usage Retrieve the subject who the principal believes says the rejected request.

public Tag getTag()

Usage Retrieve the minimum restriction set that includes the rejected request.

rmi.SfNeedAuthorizationException 110

public void sendProof(proof.Proof proof)

Usage The client (InvokeHack.invoke) calls this method with its proof of
authority to have that proof shipped to the server. The method sends a proof
via RMI to a destination where it will be noticed when the call that originally
caused this exception is retried.

The proof must show that S
T⇒ I , where

S = getSubject()

I = getIssuer()

T = getTag()

public String toString()

Usage Retrieve a textual description of the exception.

Package sdsi

This documentation only covers my changes to Morcos’ original SPKI classes, which
include the new implementations of tags and new principals that Snowflake adds to
SPKI. The most significant change is my complete reimplementation of tags based
on the tag semantics developed in the dissertation. It includes these classes:

• NullTagException
• RCAlpha
• RCAny
• RangeComparator
• TEByteString
• TEList
• TENull
• TEParse
• TEPrefix
• TERange
• TESDSIObject
• TESet
• TESpecial
• TEStar
• Tag
• TagExpression
• TagTest

The following classes are new “SDSIObjects” I have introduced to the package,
including three new types of principal:

• PseudoPrincipal
• Quoting
• SignedCertificate

111

sdsi.SfNeedAuthorizationException 112

• ThresholdSubject
The following classes are documented here because they include small but
semantically important changes to classes that came in Morcos’ package.

• Acl
• ObjectHash
• SDSIObject
• Tuple

sdsi.PseudoPrincipal 113

Classes

Class Acl
public class Acl
extends sdsi.SDSIObject

Changed Morcos’ class to use a more meaningful intersection test than just “has a
non-null intersection.” See dissertation Section 6.6.

@author Alex Morcos
@author changed by jonh@cs.dartmouth.edu
@classSummaryOnly true

Class ObjectHash
public class ObjectHash
extends sdsi.SDSIPrincipal
implements Subject

This subject is an s-expression representing the hash of some (external?) object. Its
representation is a list (object-hash the-hash)

which clearly indicates what the heck the hash is. [jonh]

@author jonh made this into a principal, since it can speak for others in Snowflake.
Example: proof.MacProof. Also added the (Hash) constructor.

@classSummaryOnly true

Class PseudoPrincipal
public class PseudoPrincipal
extends sdsi.SDSIPrincipal
implements Subject

A PseudoPrincipal is not meant to be used in any real statements. Instead, it’s a
“space” in a prototype statement to be filled in by a recipient to make a concrete
statement.

Fields
public static final String LABEL

Constructors
public PseudoPrincipal(sdsi.sexp.SexpList sexplist, sdsi.SDSIPrincipal
nameContext)

Usage Parse an S-expression into a pseudo-principal.

Parameters
sexplist - An SexpList to parse into a PseudoPrincipal subject.
nameContext - the principal to whom any names specified in the sexplist are

meaningful.

sdsi.Quoting 114

public PseudoPrincipal(java.lang.String description)

Usage Create a PseudoPrincipal.

Parameters
description - a textual description that can hint to a human what principal

should take the place of this stand-in object.

Methods
public String getDescription()

Usage Return the textual description of what real principal belongs here.

public String toShortString()

Class Quoting
public class Quoting
extends sdsi.SDSIPrincipal

One principal quoting another. The first is actually the principal doing the
speaking, the second is only named by the first; there is no intention that the second
principal has any awareness or acquiescence to the statement being made.

The speaking principal also must explicitly claim to be quoting another; it is a
useful mechanism for writing secure multiplexed services. The service is the quoting
principal; it quotes those principals on behalf of whom it is performing its service.
That way it will not accidentally perform an action for one client using its authority
granted to it by another.

An extension to SPKI. Relax! Relax! Yes I know extending a security protocol is a
dangerous proposition. This extension is justified by my semantic model of SPKI in
my thesis. The premise of the model is to give meaning to SPKI’s constructs, and
this construct preserves the meaning.

This thing is a SDSIPrincipal (which really means an Issuer) because we want it to
be legal in the issuer field of a certificate. That’s sensical in my logic, so it’s as valid
an extension as any.

@todo ThresholdSubjects should really be ThresholdPrincipals for the same reason.
@author jonh@cs.dartmouth.edu

Fields
public static final String LABEL

Constructors
public Quoting(sdsi.sexp.SexpList sexplist, sdsi.SDSIPrincipal nameContext)

Parameters

sdsi.SignedCertificate 115

sexplist - An SexpList to parse into a quoting subject.
nameContext - the principal to whom any names specified in the sexplist are

meaningful.

public Quoting(sdsi.Subject quoter, sdsi.Subject quotee)

Methods
public Subject getQuotee()
public Subject getQuoter()
public String toShortString()

Class SDSIObject

public class SDSIObject
extends java.lang.Object
implements java.io.Serializable

Added support for parsing Quoting, PseudoPrincipal, and ThresholdSubject
principals. Added performance optimizations for equals and hashCode, which were
previously pretty appalling. Now they’re only fairly appalling.

@todo Made srep and the constructors public so that I could extend it outside of
this package (so my code was a little factored). A production implementation
should clean up the package hierarchy and decide whether this class should
really be public anymore.

@author Alex Morcos
@author changed by jonh@cs.dartmouth.edu
@classSummaryOnly true

Class SignedCertificate

public class SignedCertificate
extends sdsi.SDSIObject

This object represents the Snowflake statement:

A|Q1|Q2 . . . says (B ⇒ A|Q1|Q2| . . .)
for a public-key principal A. The actual statement representation is a certificate
(Cert) representing the

(B ⇒ A|Q1|Q2|...)
statement (including the auth tag I have omitted from the formula), plus a
signature by A on the whole statement. Since A is free to quote anyone she wants,
her “saying” the right-hand statement (by calling this ctor) is taken to mean she is
quoting Q1 . . . Qn, hence the A|Q1| . . . |Qn in the left argument of the ’says’
operator.

sdsi.SignedCertificate 116

A SignedCertificate is not really a SDSI object, it’s more of a Snowflake object. It’s
a member of a superset of SDSIObject, conceptually (although not according to the
way I’m abusing the class hierarchy).

Currently it lives here in sdsi.*, because SDSIObject isn’t designed to be extended
outside its own package.

This class may want to be extended to allow the speaker to be different than the
cert issuer.

This instantiation of SignedCertificate embodies a form of the handoff rule (if you
unequivocally believe verify()):

A says C ⇒ A|B �

�C ⇒ A|B
The handoff rule and an implicit assumption that A’s signature on the statement
actually means A|B says . . . makes that so. This assumption doesn’t allow the
“undesirable form” of the handoff rule mentioned in Lampson, though:

A ⇒ G ∧ A says B ⇒ G �

�B ⇒ G

So it’s a pretty restricted, sensible part of the rule.

@jonh@cs.dartmouth.edu

Fields
public static final String LABEL

Constructors
public SignedCertificate(sdsi.Cert certificate, sdsi.SDSISignature signature)

Usage Construct a signed certificate from a certificate and a signature for the
certificate.

public SignedCertificate(sdsi.sexp.SexpList l)

Usage Parse a SignedCertificate from an S-expression.

Methods
public SDSIPublicKey getBaseSpeaker()

Usage Return the public key actually speaking (signing the cert); less the list of
principals he’s quoting.

public Cert getCertificate()
public SDSISignature getSignature()
public String getType()
public SDSIPublicKey unwindQuoting(sdsi.SDSIPrincipal principal)

sdsi.Tag 117

Usage Unwind the quoted principals from a principal quoting a chain of other
principals.

public void verify()

Exceptions

proof.InvalidProofException - if the signature is invalid

Class Tag

public class Tag
extends sdsi.SDSIObject

A Tag object represents an s-expression that begins (tag ...). TagExpressions are the
things inside that Tag object. So a Tag object is a wrapper for the whole expression.

This class and its companion classes TagExpression, TagTest, TE*,
RangeComparator, and RC* are all rewritten by jonh@cs.dartmouth.edu based on
my formal semantics for tags and tag intersection in Chapter 6 of my thesis.

Fields
public static final String LABEL

• S-expression label for this data structure.

Constructors
public Tag(sdsi.sexp.SexpList l)

Usage Parse a S-expression into a Tag object.

Methods
public static Tag getNullTag()

Usage Get the special tag representing no authorization (an empty set, or Anull)

public static Tag getTagStar()

Usage Returns (tag *), the tag representing the set of all auths A.

public boolean hasSubset(sdsi.Tag otherTag)

Usage Returns true if otherTag represents a subset of the set represented by this
tag. The test is performed by intersecting the two and seeing if you get back
otherTag.

Comments:

1. The test is sound, but I’m not sure that it is complete. Might there be
times when the thing you get back is logically equivalent to this tag, but
not syntactically equivalent?

sdsi.ThresholdSubject 118

2. The original SDSI code had a boolean intersects() method that
returned true if this Tag and otherTag intersect to something other than
the empty set (TENull). You’d think this would be a good way to test
membership of a request in a restriction set, but what if the request is a
bigger set than the restriction set? That’s a weird way to structure
requests, but in some circumstances it may be meaningful. So we really
want to test whether otherTag is a subset of this tag, hence this method.

3. if otherTag.isNull(), this test will always succeed. (And rightfully so.)

public Tag intersect(sdsi.Tag otherTag)

Usage Returns a tag that represents the set formed from the intersection of the
sets represented by this tag and the otherTag. (Got that?) If there is “no
intersection” (as the SPKI document calls it), the resulting tag will return
true when asked isNull().

public boolean isNull()

Usage Return true if this tag represents the null set of auths Anull

public String toShortString()

Usage Returns the first 15ish characters of the tag representation as a String.

public Tag union(sdsi.Tag otherTag)

Usage Return a tag that represents the union of the auths represented by this tag
and otherTag. The new tag is simply the Aset of the original two tags.

Class TagTest

public class TagTest
extends java.lang.Object

This class has a bunch of test cases to verify my implementation of Tags.

Constructors
public TagTest()

Methods
public static void main(java.lang.String []args)

Class ThresholdSubject

public class ThresholdSubject
extends sdsi.SDSIObject
implements Subject

The SPKI Threshold Subject – it speaks for the issuer when k of the n listed
principals agree on the statement; that is, when one can prove that one speaks for k
different principals of the n listed.

sdsi.NullTagException 119

@author jonh@cs.dartmouth.edu

Fields
public static final String LABEL

Constructors
public ThresholdSubject(sdsi.sexp.SexpList sexplist, sdsi.SDSIPrincipal
nameContext)

Usage Parse a ThresholdSubject from an S-expression.

Parameters
sexplist - An SexpList to parse into a threshold subject.
nameContext - the principal to whom any names specified in the sexplist are

meaningful.

public ThresholdSubject(sdsi.Subject []subjects, int k)

Usage Build a threshold principal given existing Subjects.

Parameters
subjects - the list of n Subjects. (n=subjects.length)
k - the number of subjects that must agree to represent this principal

Methods
public int getK()

Usage Return the number k of principals that must agree in order that together
they speak for the issuer.

public int getN()

Usage Return the total number of principals named in the ThresholdSubject.

public Subject getSubject(int i)
public String toShortString()

Class Tuple
public class Tuple
extends java.lang.Object

Changed Morcos’ class to use a more meaningful intersection test than just “has a
non-null intersection.” See dissertation Section 6.6.

@author changed by jonh@cs.dartmouth.edu
@classSummaryOnly true

sdsi.NullTagException 120

Exceptions

Interface NullTagException
public class NullTagException
extends java.lang.RuntimeException

Thrown if an operation cannot complete because its argument contains a TENull
tag.

@deprecated since we now use a concrete sexp representation for this tag.

Package sdsi.sexp

Enhanced versions of Morcos’ implementation of Rivest’s S-expressions, an
unambiguous data structure representation. I modified the packages in this class to
support a much more efficient dynamic reconstruction of the default S-expression
representations, which is helpful not only when you think you’re outputting a
S-expression, but they’re used heavily in the sdsi.SDSIObject’s equals() and
hashCode() methods. So these changes actually clean up a big chunk of inefficiency
in the original code. But there’s a lot more there to fix.

I also extended the SexpList interface to make it much easier for my own
SDSIObject subclasses to conveniently construct SexpList objects.

Otherwise, the interface to this package is not especially fascinating; it is a worker
class heavily used by the sdsi package, and has few interesting publicly useful
methods. So I will suppress the details here.

121

Package servlet

This package includes servlets that implement the server-side of Snowflake HTTP
authorization, including a file server and an email gateway.

122

servlet.MailServlet 123

Interfaces

Interface SSLConfiguration
public interface SSLConfiguration

An interface to allow SSLListener to extract the SSLContext from a configuration.
This approach only supports one SSLContext per server. It might be better to have
an array of them, as is done with the listenerClasses[] and such configs in
HttpConfiguration.

Methods
public SSLContext getSSLContext()

Classes

Class FileServlet
public class FileServlet
extends servlet.ProtectedServlet

FileServlet serves up a tree of files using Snowflake security implemented by
ProtectedServlet. Individual requests are handled by instantiating an inner class,
FileServlet.PMHandler, that holds the state of the request while its methods chew
away on it.

Constructors
public FileServlet()

Methods
public void init(javax.servlet.ServletConfig config)

Usage Standard servlet initialization from a configuration object. This method
creates a Prover that gathers initial delegations from the hard-coded directory
certs-server.
The config parameter root defines the top of the Unix file tree to serve.

Class MailServlet
public class MailServlet
extends servlet.ProtectedServlet

MailServlet serves up email messages stored in a relational.Database according
to the schema in relational.email. Messages and queries are mapped into
Snowflake restriction sets (SPKI tags) and protected with delegated authority.

This is the Gateway example from the thesis. It quotes the client program to ensure
that the server is making access-control decisions, even if the gateway holds
delegated authority over databases belonging to multiple users.

servlet.NaglessListener 124

@author jonh@cs.dartmouth.edu

Constructors
public MailServlet()

Methods
public void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

Usage doGet() handles a single request from a client. It binds the client’s thread to
an SSHContext associated with the gateway’s identity, and instantiates an
inner class to handle the individual request.

public void init(javax.servlet.ServletConfig config)

Usage Standard servlet initialization from parameters in a configuration object.
This servlet grabs its identity from a pregenerated public key in
certs-sharedserver/; a production implementation should generate (and
cache) its own public keys or other form of principal identification.

Then it creates a Prover to cache delegations and handle demands of authority
from the Database object.

Class NaglessListener
public class NaglessListener
extends com.mortbay.HTTP.HttpListener

A Nagle-less version of the Jetty HttpListener, to avoid timer delays that make it
hard to measure HTTP performance characteristics.

Nagle’s algorithm causes a packet send to be delayed by some time, in the hopes
that another write will come along soon enough to be grouped into the same packet.
Oddly, that delay appears even when using sockets connected to the localhost. In
either case, it interferes with measurements where we want the bottleneck resource
to be fully utilized.

In a production system, one might not want to use a NaglessListener since Nagle’s
algorithm can reduce wasteful network overhead. As long as the application code is
properly buffering its output, however, such waste should not be a problem.

Constructors
public NaglessListener(com.mortbay.Util.InetAddrPort addrPort,
com.mortbay.HTTP.HttpServer httpServer, int minThreads, int maxThreads, int
maxIdleTimeMs)

Usage Create an HTTP listener.

servlet.PSHandler 125

Methods
protected Socket accept(java.net.ServerSocket serverSocket)

Usage The only interesting thing this class does is in this method. When the
listener accepts on a socket, this method sets the TcpNoDelay option to true
(turns off Nagle’s algorithm) before passing the socket on to other handlers to
process the request arriving on it.

Class ProtectedServlet

public class ProtectedServlet
extends javax.servlet.http.HttpServlet
implements jp.SfHttpProtocol

ProtectedServlet is a parent class for servlets that want to check
Snowflake/SPKI-style permissions on incoming requests.

Constructors
public ProtectedServlet()

Methods
public void doGet(javax.servlet.http.HttpServletRequest request,
javax.servlet.http.HttpServletResponse response)

Usage Handle the GET and HEAD methods by building a simple web page.
HEAD is just like GET, except that the server returns only the headers
(including content length), not the body we write.

This method simply instantiates a PSHandler and passes the request there.

public static Proof extractProof(java.lang.String authHeader)

Usage Extract a proof from an ”Authorization: SnowflakeProof ” header. This is a
common step in the Snowflake HTTP-with-signed-requests protocol.

public void init(javax.servlet.ServletConfig config)

Usage The standard servlet initialization method. This one stashes the
configuration in an instance field saveConfig for subclasses to inspect.

Class PSHandler

public class PSHandler
extends java.lang.Object
implements jp.SfHttpProtocol

A ProtectedServlet instantiates a new PSHandler object (actually a subclass defined
by a subclass of ProtectedServlet) to handle each individual request. Any state we
store in the ProtectedServlet object itself is subject to simultaneous access by

servlet.SSLListener 126

multiple threads. So for each request, we whip together a PSHandler object to
gather per-request state in a convenient place.

Methods
public void doGet()

Usage Handle a single request. This method calls requestIsAuthorized to check
the authority of the incoming request. If the request is authorized, it calls
servePage to return the correct content. Otherwise, it calls demandAuth to
send an appropriate Snowflake/HTTP Authorization demand to the client.

The request itself and the response object were stored in this object’s state
when the constructor was called.

public SDSIPrincipal getRequiredIssuer()

Usage A method that determines the issuer principal; that is, the principal that
controls the requested resource.

public void servePage()

Usage Override this method to actually serve up your servlet-specific data.

Class SSLListener

public class SSLListener
extends servlet.NaglessListener

An SSL listener for mortbay’s Jetty webserver. By instantiating this instead of
HttpListener, you get SSL sockets. This class uses claymoresystems’ SSL
implementation.

Originally written to provide a Java-SSL-client to Java-SSL-server performance
baseline for comparison to Snowflake authorization.

@todo Adapt to implement Sf-over-SSL. That would make for a better performance
comparison, plus it would make different and interesting security/performance
tradeoffs relative to the signed-requests protocol.

Constructors
public SSLListener(com.mortbay.Util.InetAddrPort addrPort,
com.mortbay.HTTP.HttpServer httpServer, int minThreads, int maxThreads, int
maxIdleTimeMs)

Usage This is the only constructor that matters; that is, this is the one HttpServer
calls when instantiating these critters. It’s defined by
HttpListener.ConstructArgs.

servlet.SSLServerConfig 127

Methods
protected ServerSocket newServerSocket(com.mortbay.Util.InetAddrPort address,
int acceptQueueSize)

Usage New server socket. Creates a new servers socket. May be overridden by
derived class to create specialist serversockets (eg SSL).

Parameters
address - Address and port
acceptQueueSize - Accept queue size

Returns The new ServerSocket
Exceptions

java.io.IOException -

Class SSLServerConfig
public class SSLServerConfig
extends com.mortbay.HTTP.Configure.BaseConfiguration
implements SSLConfiguration

A Jetty Configuration class for an SSL HTTP server. It is not hard to combine this
server with a regular HTTP server in a single process; see fourServers.

Constructors
public SSLServerConfig(Tools.Options opts)

Usage Using the command line options in opts, configure the SSL server handler.

Methods
public static void fourServers()

Usage Configure a set of four servers for use with timingexp.HttpExp. Two are
SSL, two are plain; two use Jetty, two provide simple HTTP service using the
inner class SSLServerConfig.SimpleServer.

public SSLContext getSSLContext()

Usage Implements SSLConfiguration by supplying the requested SSLContext
object.

I’d use the getAttributes() mechanism in HttpServer/HttpConfiguration, but
it is deprecated for getProperties. I’d use the getProperties() mechanism, but
it only returns strings.

public Class listenerClasses()

Usage Listen with an SSLListener so the sockets are SSL sockets (To extend this
config to support both Http and SSL, listen on two ports with different
handlers.)

servlet.StatusCodeException 128

public static void main(java.lang.String []args)
Usage Configure an SSL server from the command line.

public void runSimpleServer(Tools.Options opts)
Usage Instantiate and run a simple server using the specified option array.

public void setSSLContext(Tools.Options opts)
Usage Establish an SSLContext according to the options.

Class SSLServerConfig.SimpleServer
public class SSLServerConfig.SimpleServer
extends java.lang.Object

A very simple Java HTTP server. This gives us a baseline for the overhead
associated with Jetty’s sophisticated request and stream handling.

Constructors
public SSLServerConfig.SimpleServer(servlet.SSLServerConfig this$0)

Methods
public void run(Tools.Options opts)
Usage Configure the server using the options, and loop, handling one request at a

time.

Exceptions

Interface StatusCodeException

public class StatusCodeException
extends java.lang.RuntimeException

This exception is related to jp.PageException in that it encapsulates an exception
and knows how to send that exception to the client via a response object. @todo In
fact, this exception class should probably be merged with PageException.

Constructors
public StatusCodeException(int code, java.lang.String msg)
Usage Create an exception with the given code.

Parameters
code - One of the SC constants defined in

java.servlet.HttpServletResponse.
msg - a textual error message

Methods
public void sendError(javax.servlet.http.HttpServletResponse response)
Usage Send the exception as an HTTP error to the client.

Package sexp

This is jonh’s manual C-to-Java translation of the C sexp code on Rivest’s web site.
Then I found Morcos’ SDSI package which included a similar translation, and bailed
out on this translation.

Perhaps this translation is worth working with later, because Morcos’ code is pretty
clunky. This code is no more optimized, though, and is missing many of the
conversion functions already present in Morcos’ code.

@author jonh@cs.dartmouth.edu

129

Package sf

The sf package includes the naming-related components of the Snowflake
prototype.

@todo The choice of classname does not follow the Java standard. It should be
changed to belong to a parent package such as edu.dartmouth.cs.jonh.

130

sf.Namespace 131

Interfaces

Interface Container
public interface Container
extends Namespace

The Container interface defines how Snowflake manipulates an underlying data
store to support stored objects. While objects bound into a Namespace may be
stored anywhere, the objects bound into a Container Namespace are stored
together. By binding other names to the objects in a Container, one can decouple
object names from storage location; the Container simply represents the most
concrete Snowflake name used for a resource.

@author Jon Howell

Methods
public Object allocate(java.lang.String name, java.lang.String clazz)

Usage Create a new instance of Class c in the container and return a reference to
the newly created Object. Calls c’s no-argument constructor. Maybe later
we’ll have a way to pass a Constructor[] (See Tiger book p. 448).

We pass around the string name of the class because this interface may be
used remotely, and Classes can’t be passed remotely. Java’s identification of
classes by name is ugly – it introduces a new textual namespace that competes
with Snowflake’s. If clazz is an interface, the message is taken to mean that
the Container should supply its own, suitable implementation of the requested
interface. If no suitable implementation is available, the method returns
ContainerException.

Returns a reference to the newly created Object.

public void free(java.lang.String r)

Usage Free the storage associated with the resource bound to name r in this
Container.

public Object store(java.lang.String name, java.lang.Object o)

Usage copy Object o into this container.

Returns a reference to the copied Object.

Interface Namespace

public interface Namespace
extends java.rmi.Remote

A Namespace is the basic Snowflake naming interface. It defines a remote object (so
that all name bindings may be shared) that maps names in some context to

sf.Namespace 132

resources. Namespaces can, of course, be recursively nested: a name may resolve to
another Namespace. Hence “Directory” is a better name for this interface; for
expository reasons, that is the name used in the dissertation.

Methods
public void bind(java.lang.String name, java.lang.Object target)

Usage Bind an object to a name in this Namespace context. Unbind a name by
calling bind with a null target object.

Parameters
target - should be Remote for the binding to be sharable by reference to

other “processes;” or at least Serializable for the binding to be shared by
value.

public boolean completeList()

Usage Indicates whether listAllNames returns every name binding that may be
resolved with lookupName.

It is not correct for listAllNames() to return a name that lookupName()
throws a NamespaceException for, except for race conditions, when the name
bindings have changed since the lookupName() was called.

Returns true if lookupName(name) throws a NamespaceException iff name is not
in the results of listAllNames(), or false if lookupName() might resolve a name
that listAllNames() doesn’t return.

public Vector listAllNames()

Usage List the names bound in this Namespace. If completeList() returns false,
the list may be empty or incomplete, even though lookupName() returns
objects for some names. This may be the case when the Namespace is an
interface to an object whose list of bindings is invisible for size or privacy
reasons, but on which the single-name lookup operation is allowable.

Returns a Vector of String names

public Object lookupName(java.lang.String name)

Usage Look up a single name in this namespace.

Returns a reference to the bound resource

Exceptions

sf.NamespaceException - if the name is not bound

public Object lookupPath(java.lang.String name)

sf.NamespaceListener 133

Usage Parse a pathname into components, and recursively resolve each component
name in the path. Notice that the Namespace server object performs this task
on behalf of the client; it might be reasonable to refactor this operation for
better network performance in different situations.

NamespaceSupport.lookupPath provides a reusable implementation of this
method, since interfaces cannot define inheritable method bodies.

Parameters
name - a string with ’/’ as a path component delimiter

public Object lookupPath(java.util.Vector path, int cur)

Usage Recursively resolve each component name in a Vector of names.

NamespaceSupport.lookupPath provides a reusable implementation of this
method, since interfaces cannot define inheritable method bodies.

Parameters
path - a Vector containing a list of names to resolve
cur - offset to the next name requiring resolution.

public int version()

Usage Should return a new value whenever the namespace implemented by this
interface changes. Reasonable implementations would be a checksum of the
name=>object mappings, or a sequence number updated whenever a change
is made. It is acceptable to change too often (such as changing even when the
mapping has not changed), but may cause some clients to poll the object
correspondingly often. Version numbers may be reused, but it’s advisable that
they not be reused for a long time (to reduce the likelihood that a client gets
fooled by missing the intervening version numbers).

This method is the most crude way that a namespace can make its changes
visible to interested parties. More efficient implementations are available by
implementing NamespaceUpdater. Clients of namespaces that only support
this version method may use a NamespaceVersionUpdater adapter object to
provide an event-based interface to the polling-only Namespace.

If a version number is not available, throws NamespaceException. (This is the
only circumstance in which it throws that exception.) Clients should interpret
zero as such, and assume that no information is available as to whether the
mapping has changed.

sf.NSFileIfc 134

Interface NamespaceListener

public interface NamespaceListener
extends java.rmi.Remote

An object that wants to be notified when a Namespace is updated should
implement NamespaceListener. Then the object should register itself using the
NamespaceUpdater interface of the Namespace or the adaptor watching the
Namespace.

@author jonh

Methods
public void listenerRemoved()

Usage This listener has been forcibly removed and will no longer receive updates.

public void namespaceEvent(sf.NamespaceEvent e)

Usage Reports an event to the listener.

Interface NamespaceUpdater

public interface NamespaceUpdater
extends java.rmi.Remote

A NamespaceUpdater is an event generator that notifies listeners when the
Namespace it monitors has changed. A typical usage is for a Namespace to
implement NamespaceUpdater directly. This interface is useful for clients that
display a dynamic view of a Namespace, such as a graphical window.

A NamespaceVersionUpdater can be used to provide event generation services for
simple Namespaces that only support version-number polling.

@author jonh@cs.dartmouth.edu

Methods
public void addNamespaceListener(sf.NamespaceListener l)

Usage Register a listener that wishes to be notified when the Namespace changes.

public void removeNamespaceListener(sf.NamespaceListener l)

Usage Deregister a listener that no longer wishes notification of Namespace
changes.

sf.NSRandomAccessFileIfc 135

Interface NSFileIfc

public interface NSFileIfc
extends java.rmi.Remote

This class is meant to do roughly what java.io.File does, giving java code an
interface to the metainformation about ”files” in the Snowflake namespace. The
notable difference is that it is a Remote interface, so that it is distributable.

From here, you can get an NSFileInputStream or NSFileOutputStream with which
to read or write ”files.”

@author jonh

Methods
public boolean canRead()

Usage Indicates whether this File object is readable.

public boolean canWrite()

Usage Indicates whether this File object is writable.

public RemoteInputStream getInputStream()

Usage Get a (remote) stream object over which bytes from this file may be read.

public RemoteOutputStream getOutputStream()

Usage Get a (remote) stream object over which bytes for this file may be written.

Interface NSInputStreamIfc
public interface NSInputStreamIfc
extends java.rmi.Remote

A NSInputStream lets you read bytes from a remote object. You need to pass it to
a RemoteInputStreamGlue to have a real java.io.InputStream, which you can then
pass to something like a DataInputStream (for reading binary data) or an
InputStreamReader (for text).

@deprecated This class was replaced by ide.RemoteInputStream, which provides
the same functionality as this interface. This class was originally designed to
be used by the Unix compatibility environment. Unix system calls map better
to the random-access interface than to separate, stateful input and streams.

@author jonh

Methods
public int available()
public void close()
public int read()
public NSInputStreamPacket read(int max)

sf.cat 136

Interface NSRandomAccessFileIfc

public interface NSRandomAccessFileIfc
extends java.rmi.Remote

NSRandomAccessFileIfc is a wire (Remote) version of the java.io.RandomAccessFile
interface. Many methods correspond, but also throw RemoteException.

This interface is used in the UFO-based Unix-compatibility environment layer.

@author jonh@cs.dartmouth.edu

Methods
public void close()
public long getFilePointer()
public long length()
public int read()
public NSInputStreamPacket read(int max)

Usage The read() interface for multiple bytes changes slightly from
java.io.RandomAccessFile, because we need to return an array by value, not
pass an empty one in by reference.

public void seek(long pos)
public void write(byte []b, int off, int len)
public void write(int b)

Interface Program

public interface Program
extends java.rmi.Remote

Program is a simple interface that explicitly declares that a given resource is a
“shell-runnable” resource. A Program takes as an argument a root Namespace,
which may by convention include an argv directory (another Namespace bound to
”argv” in the root Namespace). Programs typically also expect to find streams
bound to ”/stdin” and ”/stdout.”

This interface specifies an extant program object, with its own process. We should
define another interface for a program image, a class file that gets loaded and
instantiated locally, revealing a Program interface for invocation.

@author jonh

Methods
public Object run(sf.Namespace root)

Usage Invoke the Program object.

Returns an arbitrary Object as a result.

sf.ContainerServer 137

Classes

Class cat
public class cat
extends java.rmi.server.UnicastRemoteObject
implements Program, java.io.Serializable

A Program used in the ide.Shell to print the textual contents of a NSFileIfc
object.

Constructors
public cat()

Methods
public Object run(sf.Namespace root)

Class ClassReloader
public class ClassReloader
extends java.lang.ClassLoader

An attack at the Class Evolution problem. (For more information, look at the
proceedings of the Persistent Java Workshops.) The intention was that a
HashContainer would use a ClassReloader to acquire a new class definition for a
newly-allocated object when the class had changed.

@deprecated At the time, however, my interfaces were changing rapidly enough
that ClassReloaded objects could not communicate with one another because
they had no common interface loaded by the system classloader.

Constructors
public ClassReloader(java.lang.String myclass)

Methods
public synchronized Class loadClass(java.lang.String name, boolean resolve)
public byte loadClassData(java.lang.String name)

Class ContainerServer

public class ContainerServer
extends java.lang.Object

Build a low-level resource that implements a Container object from a Unix JVM
process. From the Snowflake point of view, a user operating as a system
administrator invokes this class to “create” a resource from lower-level raw resources
(a “disk” that speaks POSIX :v). The Container server binds this resource into Java
RMI’s flat name registry. Then the administrator binds this resource (using the
“low-level” RMIRegistry name for the resource) into his own Snowflake namespace.
From that point on, the resource is only manipulated using Snowflake names, as the
administrator uses it and shares it with others.

sf.cp 138

Constructors
public ContainerServer()

Methods
public static void main(java.lang.String []args)

Usage The Unix (java interpreter) command-line interface to create this object and
bind it in the RMIRegistry. An optional parameter determines the
RMIRegistry low-level name at which the resource is bound. That name is
used by the administrator to “find” the resource when importing it into
Snowflake with mkrem.

public void startup()

Usage A worker method that creates the container, registers it in the host’s
RMIRegistry, and registers a callback with Icee, if available, to ensure that the
container object re-exports itself after a failure recovery.

Class ContainerServer.Reregister
public class ContainerServer.Reregister
extends java.lang.Object
implements Icee.Auto.Callback

Reregister is a worker class that catches callbacks from Icee and ensures that the
container’s low-level RMIRegistry name is always available, even after an Icee
recovery. This method re-exports the object and rebinds it to its RMIRegistry
name, ensuring that any RemoteStubHacks will be able to successfully re-discover
the restored resource transparently.

Constructors
public ContainerServer.Reregister(sf.ContainerServer this$0)

Methods
public void recovered()

Class cp
public class cp
extends java.rmi.server.UnicastRemoteObject
implements Program, java.io.Serializable

A Program used in the ide.Shell to copy an NsFileIfc object from one Container
to another. It works the obvious way, by reading the stream from one object and
writing it to the other. Clearly there is room for a more sensible implementation.

Constructors
public cp()

Methods
public Object run(sf.Namespace root)

sf.HashNS 139

Usage Usage is printed when run with no arguments.

Class HashContainer

public class HashContainer
extends sf.HashNS
implements Program, Container

A basic Container implementation. Stored objects merely live in the current virtual
memory; if they are persistent, it is because Icee makes the entire JVM persistent.

Constructors
public HashContainer()

Methods
public Object allocate(java.lang.String name, java.lang.String clazz)

Usage Allocate a new instance of a given class in this Container. The class’
no-argument constructor is called to instantiate it. If clazz is an interface, the
message is taken to mean that the Container should supply its own, suitable
implementation of the requested interface. If no suitable implementation is
available, the method returns ContainerException. This class only knows
about the interface sf.NSFileIfc.

public void bind(java.lang.String name, java.lang.Object o)

Usage Disallow explicit binds to the Container. That is, conventionally, the only
names bound into a container object’s Namespace are those objects actually
stored in the container.

public void free(java.lang.String r)

Usage Discard the reference to the object bound to name r, and free the associated
space. This Container implementation defers deallocation to the Java garbage
collector.

public Object lookupName(java.lang.String name)
public Object run(sf.Namespace root)

Usage The shell ”command-line” interface for configuring a HashContainer object.

public Object store(java.lang.String name, java.lang.Object o)

Usage Store an existing object in this Container. By convention, the stored object
o should be a Serializable (not Remote) object, so that it is copied by value
into the backing store of this Container. This implementation, however, makes
no effort to enforce those semantics.

sf.ln 140

Class HashNS

public class HashNS
extends sf.rmi.UnicastRemoteObject
implements Namespace, NamespaceUpdater

The most-basic implementation of Namespace, this object binds names to arbitrary
Remote objects. Since the objects are Remote, the bindings are always by reference.
The bindings are stored in a hash table for scalability.

@author jonh

Constructors
public HashNS()

Usage Create a new Hashtable-based Namespace.

Methods
public void addNamespaceListener(sf.NamespaceListener l)

Usage This basic implementation includes support for namespace event listeners.
(Perhaps I should factor this support out into a subclass, so that HashNS is
more basic?)

public void bind(java.lang.String name, java.lang.Object o)
public boolean completeList()

Usage Since this Namespace returns only bindings stored in its hashtable, its
listAllNames() method always returns a complete list.

public Vector listAllNames()
public Object lookupName(java.lang.String name)
public Object lookupPath(java.lang.String name)

Usage Defers implementation to helper class NamespaceSupport.

public Object lookupPath(java.util.Vector path, int cur)

Usage Defers implementation to helper class NamespaceSupport.

public void removeNamespaceListener(sf.NamespaceListener l)
public int version()

Usage Versioning is implemented by incrementing a sequence number on each bind.

sf.NamespaceEvent 141

Class ln

public class ln
extends java.rmi.server.UnicastRemoteObject
implements Program, java.io.Serializable

A Program used in the ide.Shell to establish Symlinks.

Constructors
public ln()

Methods
public Object run(sf.Namespace root)

Usage Usage is specified when called with no arguments.

Class ls
public class ls
extends java.rmi.server.UnicastRemoteObject
implements Program, java.io.Serializable

A Program used in the ide.Shell to list the visible bindings in a Namespace
(directory).

Constructors
public ls()

Methods
public Object run(sf.Namespace root)

Class mkrem

public class mkrem
extends java.rmi.server.UnicastRemoteObject
implements Program, java.io.Serializable

A Program used in the ide.Shell to import raw resources into the Snowflake
naming environment. See ContainerServer for a more detailed description of how
raw resources are imported.

Constructors
public mkrem()

Methods
public Object run(sf.Namespace root)

Usage Usage is supplied when invoked with no arguments. The container URL

command-line argument is the RMIRegistry name of the raw resource.

sf.NamespaceListenerAdapter 142

Class NamespaceEvent

public class NamespaceEvent
extends java.lang.Object

A NamespaceEvent object is sent to NamespaceListeners when a Namespace they
are attending to has changed. The event encodes information about the nature of
the change to the Namespace.

@author jonh

Fields
public static final int VAGUE

• Something happened, every name could have changed for all you know.
(Both name and mapping are useless.) NamespaceVersionUpdater sends this
message, since it does not inspect the Namespace’s list at each change to
discover the differences.

public static final int NAME
• The enclosed name changed; but no mapping is supplied. Receiver must query
Namespace to discover the mapping if desired.

public static final int MAPPING
• Both name and mapping are valid (most explicit event)

public int type
• One of VAGUE, NAME, or MAPPING.

public String name
• The name that has been changed (if type!=VAGUE)

public Object mapping
• The new mapping for the name (if type==MAPPING)

Constructors
public NamespaceEvent(int type)
public NamespaceEvent(int type, java.lang.String name)
public NamespaceEvent(int type, java.lang.String name, java.lang.Object mapping)

Methods
public String toString()

Class NamespaceListenerAdapter
public class NamespaceListenerAdapter
extends java.rmi.server.UnicastRemoteObject
implements NamespaceListener

The NamespaceListenerAdapter is a convenience superclass used by classes
implementing the NamespaceListener interface. Simply override the method you are
interested in receiving; invocations on the others will be ignored.

sf.NamespaceSupport 143

@author jonh@cs.dartmouth.edu

Constructors
public NamespaceListenerAdapter()

Methods
public void listenerRemoved()

Usage This listener has been removed from the namespace’s update list; do not
expect any further events.

public void namespaceEvent(sf.NamespaceEvent e)

Usage A namespace of interest has changed.

Class NamespaceSupport

public class NamespaceSupport
extends java.lang.Object

The NamespaceSupport class is a tool to assist Namespace implementations. It
provides common parsing routines.

@todo Turn this into a convenience superclass, so that Namespace implementations
inherit its functionality, rather than needing to call it.

Constructors
public NamespaceSupport()

Methods
public static Vector enumerationToVector(java.util.Enumeration e)

Usage Extract the contents of an Enumeration as a Vector. Another one of those
important little details nature, er, Sun forgot.

public static Object lookupPath(java.lang.String name, sf.Namespace top)

Usage Parse a path name and resolve it, beginning at the specified Namespace.

Parameters
top - usually the Namespace using this class for support.

public static Object lookupPath(java.util.Vector path, int cur, sf.Namespace top)

Usage Look up a path beginning at the specified namespace. The path is specified
as a Vector of component names plus a starting index into the vector. This
method is the recursive formulation of lookupPath.

Parameters
path - Vector containing a list of pathname components to resolve.
cur - offset into the vector to find the component that should be resolved in

top.

sf.NamespaceVersionUpdater 144

top - Namespace at which to begin the resolution.

public static Vector parsePath(java.lang.String path)

Usage Parse a path into component pathnames. Returns a vector which is the
decomposition of String path around slashes (’/’). If the first argument is an
empty string, the path started with a slash, and hence was root-based (which
may or may not be a meaningful distinction, depending on context). Other
empty strings should be treated as NOPs.

Class NamespaceUpdateMulticaster

public class NamespaceUpdateMulticaster
extends java.lang.Object

A NamespaceUpdateMulticaster is a helper object that manages a list of event
subscribers and broadcasts events. It can be used to supply an implementation of
the NamespaceUpdater interface.

@author jonh

Constructors
public NamespaceUpdateMulticaster()

Methods
public void addNamespaceListener(sf.NamespaceListener l)

Usage Forward requests add requests on the NamespaceUpdater interface to this
method to manage the subscriber list.

public void listenerRemoved()

Usage Forcibly unsubscribe a listener.

public void namespaceEvent(sf.NamespaceEvent ev)

Usage Broadcast a NamespaceEvent to all subscribed listeners.

public void removeNamespaceListener(sf.NamespaceListener l)

Usage Forward requests remove requests on the NamespaceUpdater interface to
this method to manage the subscriber list.

public int size()

Returns a count of the current number of subscribers.

sf.NSInputStreamImpl 145

Class NamespaceVersionUpdater

public class NamespaceVersionUpdater
extends java.rmi.server.UnicastRemoteObject
implements NamespaceUpdater, java.lang.Runnable

This class polls a namespace’s version() method, and when it changes, generates
NamespaceEvents for listeners. It should be used like this:

NamespaceVersionUpdater nvu = new NamespaceVersionUpdater(500);

// poll twice a second

Thread nvut = new Thread(nvu);

nvut.start();

@author jonh

Constructors
public NamespaceVersionUpdater(sf.Namespace ns, long pollPeriod)

Usage Create a new NamespaceVersionUpdater to watch a Namespace.

Parameters
ns - the Namespace to watch
pollPeriod - how frequently to query the Namespace’s version() method, in

milliseconds

Methods
public synchronized void addNamespaceListener(sf.NamespaceListener l)
public synchronized void removeNamespaceListener(sf.NamespaceListener l)
public void run()

Usage Runnable implementation polls Namespace and sleeps between polls.

Class NSInputStreamImpl

public class NSInputStreamImpl
extends java.rmi.server.UnicastRemoteObject
implements NSInputStreamIfc

An NSInputStream lets you read bytes from a remote object. You need to pass it to
a RemoteInputStreamGlue to have a real java.io.InputStream, which you can then
pass to something like a DataInputStream (for reading binary data) or an
InputStreamReader (for text). So there could be several server-side
implementations of this interface, couldn’t there? Depending on whether the data
source is a Unix file, or something else...

@deprecated Replaced by ide.RemoteInputStream.

sf.NSMemoryFileImpl.MemInputStream 146

Constructors
public NSInputStreamImpl(java.lang.String unixpath)

Methods
public int available()
public void close()
public int read()
public NSInputStreamPacket read(int max)

Class NSInputStreamPacket

public class NSInputStreamPacket
extends java.lang.Object
implements java.io.Serializable

See NSRandomAccessFileIfc.read(int) for details on how this class is used.

Constructors
public NSInputStreamPacket()

Class NSMemoryFileImpl

public class NSMemoryFileImpl
extends java.rmi.server.UnicastRemoteObject
implements NSFileIfc

NSMemoryFileImpl is derived from NSUnixFileImpl. Just an object with a File-like
interface, and a way to get an associated input or output stream. Not explicitly
stored anywhere but memory; but perhaps made persistent with Icee. The point is
to provide an alternative to files backed by the Unix filesystem. From here, you can
get an ide.RemoteInputStream or ide.RemoteOutputStream with which to read or
write ”files,” or a NSRandomAccessFileIfc object with an NFS-like interface.

@todo This is a really dumb implementation – every time the file grows, it gets
copied and the old block deallocated. A simple optimization that would help
most of the time would be to keep a vector of (say) 8k blocks, and tack on
new ones when a write grows the file. Basically just like a filesystem would.

@classConcise true

Constructors
public NSMemoryFileImpl()

Class NSMemoryFileImpl.MemInputStream
public class NSMemoryFileImpl.MemInputStream
extends java.rmi.server.UnicastRemoteObject
implements ide.RemoteInputStream

The implementation of ide.RemoteInputStream for NSMemoryFileImpls.

@classConcise true

sf.NSUnixFileImpl 147

Serializable Fields
private final NSMemoryFileImpl this$0

Class NSMemoryFileImpl.MemOutputStream
public class NSMemoryFileImpl.MemOutputStream
extends java.rmi.server.UnicastRemoteObject
implements ide.RemoteOutputStream

The implementation of ide.RemoteOutputStream for NSMemoryFileImpls.

@classConcise true

Serializable Fields
private final NSMemoryFileImpl this$0

Class NSRandomAccessFileImpl
public class NSRandomAccessFileImpl
extends java.rmi.server.UnicastRemoteObject
implements NSRandomAccessFileIfc

NSRandomAccessFileImpl is an implementation for serving up random access files
to Java RMI clients. This implementation is used in the UFO-based
Unix-compatibility environment layer.

@author jonh@cs.dartmouth.edu
@classConcise true

Constructors
public NSRandomAccessFileImpl(java.lang.String unixpath, java.lang.String mode
)

Class NSUnixFileImpl
public class NSUnixFileImpl
extends java.rmi.server.UnicastRemoteObject
implements NSFileIfc

This class is meant to do roughly what java.io.File does, giving java code an
interface to the metainformation about “files” in the Snowflake namespace. (Except
that this class is Remote.)

From here, you can get an ide.RemoteInputStream or ide.RemoteOutputStream
with which to read or write “files.”

@classConcise true

Constructors
public NSUnixFileImpl(sf.Namespace node, java.lang.String unixpath)

sf.Sf 148

public NSUnixFileImpl(sf.Namespace root, java.lang.String path, java.lang.String
unixpath)
public NSUnixFileImpl(sf.Namespace root, java.util.Vector path, java.lang.String
unixpath)

Methods
public NSRandomAccessFileIfc openNSRandomAccessFileIfc(java.lang.String
mode)

Usage The Unix-emulation code uses this method to get an NFS-like interface on
the file-typed object, rather than a Java-style InputStream/OutputStream
interface.

Class Proxy
public class Proxy
extends java.rmi.server.UnicastRemoteObject
implements Program, Namespace

Proxy: redirects namespace requests to another namespace A proxy is like a hard
link, in that its effect is invisible to the client. It is unlike a hard link in that
referential integrity is not enforced.

@classConcise true

Constructors
public Proxy()

Methods
public Object run(sf.Namespace root)

Usage The shell ”command-line” interface for configuring a new Proxy object.

Class SecureContainerServer
public class SecureContainerServer
extends java.lang.Object

This class represents an early attempt at looking at securing resources. It portends
the horrible troubles one might have when attempting to secure resources without
any meaning or semantics. (grin)

@deprecated Since Snowflake has a legitimate security story.

Constructors
public SecureContainerServer()

Methods
public static void main(java.lang.String []args)
public void startup()

sf.Sf 149

Class Sf

public class Sf
extends java.lang.Object

The client-side naming toolkit. Performs naming operations in the current
Namespace context. A Namespace context is a ”stack” of names per thread.

Constructors
public Sf()

Methods
public static Namespace currentNamespace()

Usage Return the current Namespace – the one at the top of the current thread’s
namespace stack.

public static Object lookupPath(sf.Namespace ns, java.util.Vector nameVector, int
depth)

Usage Resolve a path given the current naming context. (Recursive formulation;
not typically used by clients.) This method detects Symlinks and re-resolves
them. It also annotates those remote references that support name
annotations (see sf.rmi.RemoteStubHack) for automatic name re-resolution.

public static Object lookupPath(java.lang.String name)

Usage Resolve a path given the current naming context.

public static Namespace popNamespace()

Usage End the scope of a current Namespace declaration. Typically used in a
finally { } block.

public static void println(sf.Namespace root, java.lang.String s)

Usage Print a message on the standard output stream defined by the given root
namespace at streams/output.

public static void pushNamespace(sf.Namespace n)

Usage Push a new Namespace onto the thread Namespace stack. A
pushNamespace operation defines the root naming context for all calls inside
the scope of this declaration, until the corresponding popNamespace. A

try {
...

} finally{
...

}

block can be used to give this context the feel of a language-scoped structure.

sf.Union 150

public static void pushNamespace(java.lang.Thread t, sf.Namespace n)

Usage A mechanism for establishing a child thread’s root Namespace. TODO:
Having this being a ’public’ method is a security hole if a JVM contains
mutually-untrusting processes. But this mechanism is in place until Java
provides a mechanism for inheritance of state from a parent thread.

public static Vector sort(java.util.Vector list)

Usage Still another method that is (was) mysteriously missing from the Java
standard libraries.

public static BufferedReader stdin(sf.Namespace root)

Usage Return a reference to the standard input stream bound into the given root
namespace at streams/input.

public static PrintWriter stdout(sf.Namespace root)

Usage Return a reference to the standard output stream bound into the given root
namespace at streams/stdout.

public static String v2s(java.util.Vector nameVector)

Usage Turn a Vector of component names into a string pathname beginning with /.

Class Symlink
public class Symlink
extends java.lang.Object
implements java.io.Serializable

Symlink: A symbolic link. It is a token object that carries a new name that Sf, the
client-side support library, should automatically re-resolve on behalf of the client
program.

Serializable Fields
public String target

• The path name to be re-resolved. If it is absolute, the resolution should begin
at the client’s active root. If the path is relative, resolution begins at the same
directory (Namespace) where this object was found.

Constructors
public Symlink()

sf.UnixContainer 151

Class Union

public class Union
extends java.rmi.server.UnicastRemoteObject
implements Program, Namespace

A Union directory (Namespace) unions the contents of several other Namespaces.
Implemented like Proxy, but with layers of “mounted” directories that operations
can fall through to.

@classConcise true

Constructors
public Union()

Methods
public Object run(sf.Namespace root)

Usage The shell “command-line” interface for configuring a Union object. This is
currently the only interface for adding new layers to the Union. Use the
“target” command to add a layer.

Class UnixContainer
public class UnixContainer
extends sf.HashNS
implements Program, Container

A Container whose backing store is a file in a Unix filesystem. It can only store
objects that implement NsFileIfc, for the obvious reason.

Constructors
public UnixContainer()

Usage Instantiate a container, using the root of the Unix filesystem as the backing
store.

public UnixContainer(java.lang.String path)

Usage Instantiate a container, using the given Unix file path as the backing store.

Methods
public void addNamespaceListener(sf.NamespaceListener l)
public Object allocate(java.lang.String name, java.lang.String clazz)

Usage Allocate a new object stored in this Container.

Parameters
clazz - must be one of UnixContainer, indicating a new subdirectory, or

NSFileIfc, indicating a new file.

sf.NamespaceException 152

public void bind(java.lang.String name, java.lang.Object o)

Usage Disallow explicit binds to the Container. That is, conventionally, the only
names bound into a container object’s Namespace are those objects actually
stored in the container.

public void free(java.lang.String name)

Usage Free the resource bound to name. This method will attempt to delete the
corresponding file or directory in the Unix filesystem.

public Vector listAllNames()
public Object lookupName(java.lang.String name)
public Object lookupPath(java.util.Vector path, int cur)
public void removeNamespaceListener(sf.NamespaceListener l)
public Object run(sf.Namespace root)

Usage The shell ”command-line” interface for configuring a UnixContainer object.

public Object store(java.lang.String name, java.lang.Object o)
public int version()

Usage Change detection on a UnixContainer is implemented by inspecting the
Unix modification time of the backing directory.

Exceptions

Interface ContainerException
public class ContainerException
extends java.lang.Exception

A ContainerException indicates a failure occurred in handling a Container message.

Constructors
public ContainerException()
public ContainerException(java.lang.String s)

Interface NamespaceException

public class NamespaceException
extends java.lang.Exception

Something failed when performing a Namespace interface operation.

Constructors
public NamespaceException()
public NamespaceException(java.lang.String s)

Package sf.rmi

The sf.rmi package includes my replumbing of RMI to support two Snowflake
features: self-rebinding remote stubs that recover their bindings after losing a
connection to the server, and a first hack at security based on a very early version of
the speaks-for-regarding calculus. The latter feature is deprecated, since it is
replaced by the newer, SPKI-based security model. Those deprecated classes are
omitted.

@todo The choice of classname does not follow the Java standard. It should be
changed to belong to a parent package such as edu.dartmouth.cs.jonh.

153

sf.rmi.UnicastRef 154

Classes

Class DeputyImpl
public class DeputyImpl
extends sf.rmi.UnicastRemoteObject
implements Deputy

This was the class that generated proofs, the analog to the current proof.Prover.

@deprecated Part of a prior attempt at security, before I had completely developed
the logical formalism and restarted my implementation based on SPKI.

Constructors
public DeputyImpl(sf.rmi.SshEndpoint ep)

Methods
public void addProof(sf.rsec.Proof proof)
public boolean doneProof(sf.rsec.Proof old)
public Proof findProof(sf.rsec.Statement s)

Class RemoteStubHack

public abstract class RemoteStubHack
extends java.rmi.server.RemoteStub

A variation on RemoteStub to allow external code (UnicastRef) to call getRef() so
it can ask the ref to get a new channel and a new connection, when the old one is
broken. Used to enable automatic resource rebinding through automatic
re-resolution of names.

@todo A non-prototype implementation would need to be careful with regards to
JVM security in exposing this information; perhaps “” (Java’s mysteriously
unnamed default permission) is an appropriate way to control access to the
reference.

Constructors
protected RemoteStubHack()

Usage This class is accepted wherever fine RemoteStubs are also accepted.

protected RemoteStubHack(java.rmi.server.RemoteRef ref)

Usage This class is accepted wherever fine RemoteStubs are also accepted.

Methods
public RemoteRef getRef()

Usage Let sf.rmi.Unicast access this stub’s RemoteRef object.

sf.rmi.UnicastRemoteObject 155

Class UnicastRef

public class UnicastRef
extends java.lang.Object
implements java.rmi.server.RemoteRef, java.io.Serializable

The purpose of modifying this class is to cause remote stubs to automatically try to
reconnect to their servers when the connection is lost. This step is the first in
automatic rebinding. The second step is to re-resolve the name that produced the
resource, and the steps beyond are to recursively re-resolve parent names in the
path that arrived at this resource. A version of a Sun class modified for my
nefarious purposes. I don’t think I actually used this class other than temporarily
while debugging the flow of RMI transactions. Plumbing.

@author modified by jonh@cs.dartmouth.edu
@todo NOT FOR DISTRIBUTION
@classSummaryOnly true

Class UnicastRemoteObject
public class UnicastRemoteObject
extends sf.rmi.RemoteServer

I modified this class to see how to get it to do snowflake references that can look up
stashed names in case a LiveRef fails. Basically, this class is required to instantiate
sf.rmi.UnicastServerRefs instead of the original UnicastServerRefs. That this
class is required is an artifact of RMI’s current non-extensibility.

A version of a Sun class modified for my nefarious purposes. I don’t think I actually
used this class other than temporarily while debugging the flow of RMI
transactions. Plumbing.

@author modified by jonh@cs.dartmouth.edu
@todo NOT FOR DISTRIBUTION
@classSummaryOnly true

Package sf.rsec

The sf.rsec package was my second hack at security, and my first implementation
of an early version of the speaks-for-regarding calculus. The calculus was essentially
the same as it ended up in the dissertation. This implementation is not based on
SPKI, however, and has RSA keys wired in a little more tightly than my
generalization of SPKI.

This implementation contains seventeen classes, but since they have been
superseded by the newer implementation, this manual omits them. Their
functionality is replicated in the packages listed in the @deprecated tag.

@todo The choice of classname does not follow the Java standard. It should be
changed to belong to a parent package such as edu.dartmouth.cs.jonh.

@deprecated replaced by the proof package and new classes in the sdsi package.

156

Package sf.sec

The sf.sec package was my very first stab at a security model for Snowflake. It has
a basic notion of restriction (RestrictMask), and was beginning to think about
delegation (Prinicpal). It was replaced by the sf.rsec package, and then later the
SPKI-based security that is documented in my dissertation. This implementation
contains nine classes, but since they have been superseded by the newer
implementation, this manual omits them.

@todo The choice of classname does not follow the Java standard. It should be
changed to belong to a parent package such as edu.dartmouth.cs.jonh.

@deprecated replaced by the proof package and new classes in the sdsi package.

157

Package ssh

My own Java implementation of version 1 of the SSH protocol. It is “inspired” by
the source code to the C code for ssh 1.x, but reorganized and rewritten and ported
enough that I can claim the copyright on this version.

Some of the classes in this package add support for using SSH to protect RMI
connections, as Snowflake does.

This package predates the Java Cryptography Extensions. It should be modified to
merge with JCE interfaces. Specifically, my stub SshRandom class should be
replaced with calls to a cryptographically-strong source of randomness, and the
ssh.RSA package should become a JCE provider so that my implementation can be
replaced with alternative implementations.

@author jonh@cs.dartmouth.edu

158

ssh.Authenticator 159

Interfaces

Interface KeyedSocket
public interface KeyedSocket

A Socket that implements this interface can identify the other end of the socket by
its public key; it has somehow (generally by checking a signature during key
exchange) shown that messages emerging from the socket on this end are spoken for
by the public key returned by getOppositeKey.

Methods
public RSAKey getOppositeKey()

Usage Return the public key that speaks for messages read from the local end of
the socket.

Interface SRPConstants
public interface SRPConstants

This interface puts constant definitions into the scope of any class that ’implements’
it. SRP is short for Secure RMI Protocol, by which I mean RMI-over-ssh.

@author Jon Howell <jonh@cs.dartmouth.edu>

Fields
public static final int SRP CMSG BORROW SESSION KEY

public static final int SRP CMSG KEY EXCHANGE

public static final int SRP SMSG SUCCESS

public static final int SRP SMSG SERVER KEY

public static final int SRP CMSG CLIENT KEY

public static final int SRP SMSG SESSION KEY

public static final int SRP CMSG SUCCESS

public static final byte SRP CIPHER IDEA

Classes

Class Authenticator

public abstract class Authenticator
extends java.lang.Object

Purpose: An instance of a subclass of this abstract class can engage the ssh server in
an authentication dialog. Used to plug in different user-authentication mechanisms.

Source: for ssh protocol definition: draft-ylonen-ssh-protocol-00.txt

@author Jon Howell <jonh@cs.dartmouth.edu>

ssh.BinaryPacketInputStream 160

Constructors
public Authenticator()

Methods
public abstract void authenticate(ssh.BinaryPacketInputStream binaryIn,
ssh.BinaryPacketOutputStream binaryOut)

Class BinaryPacketIn

public class BinaryPacketIn
extends java.io.DataInputStream

This class represents an incoming ssh binary packet. It’s a subclass of
DataInputStream, so you can pick out the packet fields using the usual methods.
This class also defines some methods relevant to binary packets, such as ones that
extract multiple-precision integers in ssh format.

A BinaryPacketIn object handles the type and data parts of an ssh binary packet.

Source: draft-ylonen-ssh-protocol-00.txt, page 3

@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public BinaryPacketIn(java.io.InputStream is, int length, byte []body)

Methods
public int getType()
public BigInteger readBigInteger()
public String readString()
public byte readStringAsBytes()

Class BinaryPacketInputStream

public class BinaryPacketInputStream
extends java.lang.Object

This class reads an ssh binary packet protocol stream, and produces BinaryPacketIn
objects representing each packet.

Source: draft-ylonen-ssh-protocol-00.txt, pages 3-4.

@author Jon Howell <jonh@cs.dartmouth.edu>

Fields
public DataInputStream dataIn

Constructors
public BinaryPacketInputStream(java.io.InputStream i)

ssh.Cipher 161

Methods
public void close()
public BinaryPacketIn readPacket()
public void setCipher(ssh.Cipher cipher)

Class BinaryPacketOut

public class BinaryPacketOut
extends java.io.DataOutputStream

Objects of this class are DataOutputStreams so they can be conveniently packed
with data; then they are passed to a BinaryPacketOutputStream to be sent over an
ssh binary packet stream.

A BinaryPacketOut object handles the type and data parts of an ssh binary packet.

Source: draft-ylonen-ssh-protocol-00.txt, pages 3-4.
@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public BinaryPacketOut(java.io.ByteArrayOutputStream os)

Methods
public static BinaryPacketOut newBinaryPacketOut()
public void setType(int type)
public byte toByteArray()
public void writeBigInteger(java.math.BigInteger bi)
public void writeString(java.lang.String str)
public void writeStringAsBytes(byte []b, int off, int len)

Class BinaryPacketOutputStream
public class BinaryPacketOutputStream
extends java.lang.Object

This class writes an ssh binary packet protocol stream, consuming BinaryPacketOut
objects representing each packet.

Source: draft-ylonen-ssh-protocol-00.txt, pages 3-4.
@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public BinaryPacketOutputStream(java.io.OutputStream o)

Methods
public BinaryPacketOut newPacket()
public void setCipher(ssh.Cipher cipher)
public void writePacket(ssh.BinaryPacketOut op)

ssh.ClientProtocol 162

Class Cipher

public abstract class Cipher
extends java.lang.Object

Cipher is an abstract class that defines the interface to an object that provides
encipherment services.

@todo replace with JCE interfaces

Methods
public abstract void decipher(byte []dest, byte []src, int len)
public abstract void encipher(byte []dest, byte []src, int len)
public abstract void setKey(byte []key)

Class CipherIdea

public class CipherIdea
extends ssh.Cipher

CipherIdea – implements IDEA cipher Inspired by idea.[ch] in ssh-1.2.22 (hence
related variable and function names), but implemented by Jon Howell. Comments
that relate to the algorithm are also verbatim from the C source.

@todo reimplement IDEA from some public document, like a paper

Constructors
public CipherIdea()

Methods
public void decipher(byte []dest, byte []src, int len)
public void destroyContext()
public void encipher(byte []dest, byte []src, int len)
public void setKey(byte []key)

Class ClientProtocol

public class ClientProtocol
extends java.lang.Object

This class implements the client side of the ssh protocol. It establishes an ssh
session on a channel, and then provides an InputStream/OutputStream abstraction
to allow the caller to transmit data securely over the underlying channel.

Source: draft-ylonen-ssh-protocol-00.txt

@author Jon Howell <jonh@cs.dartmouth.edu>

ssh.Protocol2 163

Fields
public static String clientVersion

Constructors
public ClientProtocol()

Methods
public void authenticate()
public void connect(java.net.Socket socket, ssh.Authenticator []auth)
public void connect(java.lang.String host, ssh.Authenticator auth)
public void connect(java.lang.String host, int port, ssh.Authenticator auth)
public void connect(java.lang.String host, int port, ssh.Authenticator []auth)
public InputStream getInputStream()
public OutputStream getOutputStream()
public static void main(java.lang.String []args)
public void preparatory(boolean getPty)

Class PasswordAuthenticator

public abstract class PasswordAuthenticator
extends ssh.Authenticator

This class is an Authenticator that simply sends a password over the encrypted
channel.

Source: for ssh protocol definition: draft-ylonen-ssh-protocol-00.txt especially pages
13, 21.

@author jonh@cs.dartmouth.edu

Constructors
public PasswordAuthenticator(java.lang.String password)

Methods
public void authenticate(ssh.BinaryPacketInputStream binaryIn,
ssh.BinaryPacketOutputStream binaryOut)

Class Protocol
public class Protocol
extends java.lang.Object

This class defines the constants used in ssh version 1 protocol packets.

Source: draft-ylonen-ssh-protocol-00.txt

@author Jon Howell <jonh@cs.dartmouth.edu>
@classSummaryOnly true

ssh.SecureRMIProtocol 164

Class Protocol2

public class Protocol2
extends java.lang.Object

This class defines the constants used in ssh protocol packets for ssh version 2. Sadly,
they’re totally different than ssh version 1, to the point that SSH Inc’s idea of
interoperability is to fire up the v.1 executable when needed to talk to a v1 remote
end.

So I’m not actually implementing v2 at all. I have an implementation of v1 in here,
but my main use of ssh, in Jon’s ”SRP” (Secure RMI Protocol) is something that
looks like v1, but with some of my own messages, and v2-style channels. Source: ssh
2.0.13/lib/sshproto/sshmsgs.h

@author Jon Howell <jonh@cs.dartmouth.edu>
@classSummaryOnly true

Class RMITest

public class RMITest
extends java.rmi.server.UnicastRemoteObject
implements Hello

A class to test plugging SSH in under RMI using JDK1.2’s SocketFactory stuff. (I
had gotten this entire arrangement working once before by seriously rewiring
JDK1.1.x’s RMI; then they made that fix obsolete :v/ That code is in class
ssh.SecureRMIProtocol.)

Methods
public String hello()
public static void main(java.lang.String []args)

Class SecureRMIProtocol

public class SecureRMIProtocol
extends java.lang.Object
implements SRPConstants

This class implements a simple encrypted channel, based on ssh. Several features
are left out (man-in-the-middle and privacy defenses), meant to be implemented and
verified by a higher layer based on the regarding calculus.

Source: based on ClientProtocol.java, my Java implementation of ssh 1.5.

@deprecated This is the version of the protocol that predates JDK1.2’s
RMISocketFactory mechanism. See SSHServerSocketFactory for the new
way to plug this SSH channel implementation into RMI.

ssh.SSHClientSocketFactory 165

@author Jon Howell <jonh@cs.dartmouth.edu>

Fields
public static String protocolVersion

Constructors
public SecureRMIProtocol()

Methods
public void accept(java.io.InputStream is, java.io.OutputStream os)
public void accept(java.net.Socket socket)
public void connect(java.io.InputStream is, java.io.OutputStream os)
public void connect(java.net.Socket socket)
public void connect(java.lang.String host, int port)
public InputStream getInputStream()
public RSAKey getOppositeKey()
public OutputStream getOutputStream()
public void setKey(ssh.RSA.RSAKey []pair)
public void setKey(ssh.RSA.RSAKey privateKey, ssh.RSA.RSAKey publicKey)

Class SRPTest

public class SRPTest
extends java.lang.Object

This simple class just tests using SSH as a raw, link protocol, without any
“authentication” that the public key on the other end is meaningful. That’s how we
use SSH in Snowflake; Snowflake proofs take care of showing that the keys have
authority.

Constructors
public SRPTest()

Methods
public static void main(java.lang.String []args)
public void realMain()

Class SSHClientSocketFactory
public class SSHClientSocketFactory
extends java.lang.Object
implements java.rmi.server.RMIClientSocketFactory, java.io.Serializable

An adaptor to use my SSH channels with RMI from JDK 1.2, where your own
socket factories can supply the channels over which RMI communicates.

Constructors
public SSHClientSocketFactory()
public SSHClientSocketFactory(ssh.SSHContext context)

ssh.SSHOptSocket 166

Methods
public Socket createSocket(java.lang.String host, int port)

Class SSHContext
public class SSHContext
extends java.lang.Object

This class is analogous to PureTLS’ SSLContext for SSL channels. It is an object
that carries the state needed to connect and accept SSH channels. It has its own
RSA public/private key pair, and a reference to a source of randomness.

Fields
public static PerThread contextByThread

Constructors
public SSHContext(ssh.RSA.RSAKey privateKey, ssh.RSA.RSAKey publicKey)

Methods
public static SSHContext getDefault()

Usage Get an anonymous context. Tries to use the context associated with this
thread; otherwise creates a new default context.

public SDSIRSAPrivateKey getPrivateKey()
public SDSIRSAPublicKey getPublicKey()
public SDSIRSAPrivateKey getSDSIRSAPrivateKey()
public SDSIRSAPublicKey getSDSIRSAPublicKey()
public static SSHContext newKeys()
public void setKey(ssh.RSA.RSAKey []pair)
public void setKey(ssh.RSA.RSAKey privateKey, ssh.RSA.RSAKey publicKey)

Class SshInputStream

public class SshInputStream
extends java.io.InputStream

This class reads data from an ssh stream. It extracts incoming bytes from the
BinaryPacketIn packets, and buffers unused ones to return on future read requests.
One way to get your hands on an instance of this class is by calling connect() and
then getInputStream() on an ssh.ClientProtocol.

@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public SshInputStream(ssh.BinaryPacketInputStream binaryIn)

Methods
public int read()
public int read(byte []b, int off, int len)

ssh.SSHOptSocket 167

Class SSHOptSocket

public class SSHOptSocket
extends java.net.Socket
implements SRPConstants

This class is a little fancier than the basic SSHSocket class in that it knows how to
recognize connections back to the local VM, and optimize away the SSH handshake
and encryption gunk. That saves a 1500ms public key operation (latency) and the
bandwidth cost of the secret-key encryption layer. This feature is pretty important
for use with RMI, which can’t identify local connections on its own.

@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public SSHOptSocket(ssh.SSHContext context, java.net.InetAddress
remoteAddress, int remotePort)
public SSHOptSocket(ssh.SSHContext context, java.net.InetAddress
remoteAddress, int remotePort, java.net.InetAddress localAddress, int localPort)

Usage Initiates a connection to a remote server.

public SSHOptSocket(ssh.SSHContext context, java.lang.String remoteHost, int
remotePort)

Methods
public void close()

Usage Make sure encrypted stream gets flushed cleanly.

public InetAddress getInetAddress()

Usage pass through all other Socket stuff. Aaargh how I wish java.net.Socket were
an interface. These stubs were automatically generated, hence the terrible
parameter names.

public InputStream getInputStream()
public InetAddress getLocalAddress()
public int getLocalPort()
public RSAKey getOppositeKey()

Usage How to find out what public key identifies the other end of this connection.

public OutputStream getOutputStream()
public int getPort()
public synchronized int getReceiveBufferSize()
public synchronized int getSendBufferSize()
public int getSoLinger()
public synchronized int getSoTimeout()

ssh.SSHServerSocket 168

public boolean getTcpNoDelay()
public synchronized void setReceiveBufferSize(int p0)
public synchronized void setSendBufferSize(int p0)
public void setSoLinger(boolean p0, int p1)
public synchronized void setSoTimeout(int p0)
public void setTcpNoDelay(boolean p0)

Class SshOutputStream
public class SshOutputStream
extends java.io.OutputStream

This class writes data to an ssh stream. It creates a BinaryPacketOut ssh packet for
each write request, and sends it down the BinaryPacketOutputStream. One way to
get your hands on an instance of this class is by calling connect() and then
getOutputStream() on an ssh.ClientProtocol.
@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public SshOutputStream(ssh.BinaryPacketOutputStream binaryOut)

Methods
public void close()
public void setType(int type)
public void write(byte []b, int off, int len)
public void write(int b)

Class SshRandom
public class SshRandom
extends java.util.Random

This class implements a pool of random bits, and provides access methods that are
appropriate to the needs of this package.
@todo grab some actual randomness from the environment to keep the entropy

flowing.
@todo or better yet, replace with a call to the new JCE.
@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public SshRandom()

Methods
public BigInteger newBigInteger(int size)
public BigInteger newBigIntegerBits(int size)
public byte newByteArray(int size)
public int nextByte()
public int nextNonzeroByte()

ssh.SSHServerSocketFactory 169

Class SSHServerSocket

public class SSHServerSocket
extends java.net.ServerSocket

An adaptor to use my SSH channels with RMI from JDK 1.2, where your own
socket factories can supply the channels over which RMI communicates.

This adaptor knows how to handle SSHOptSockets and HalfSockets, as well. These
classes are the implementations of SSH channel reuse and channel short-circuiting
(in the local case), respectively.

Constructors
public SSHServerSocket(ssh.SSHContext context, int port)
public SSHServerSocket(ssh.SSHContext context, int port, int backlog,
java.net.InetAddress inetaddr)

Methods
public Socket accept()

Usage Accept a connection on this socket, and run the server side of the SSH
protocol on the connection to initialize it.

public void localConnection(java.net.Socket s)

Usage ”Listen” for local connections. The caller is a local (same-VM) client who
doesn’t want to deal with a network connection plus a 1500ms SSH handshake
overhead. He has supplied a ”socket” that acts like a network socket (notably
has a working InputStream and OutputStream), but is implemented entirely
inside the VM. This method takes that socket and sticks it into the accept()
queue, where a thread waiting to accept() on this ServerSocket will pick it up
and treat it just like an incoming network connection.

Class SSHServerSocket.AcceptThread
public class SSHServerSocket.AcceptThread
extends java.lang.Thread

Listen for real network connections

Constructors
public SSHServerSocket.AcceptThread(ssh.SSHServerSocket this$0)

Methods
public void run()

Class SSHServerSocketFactory

public class SSHServerSocketFactory
extends java.lang.Object
implements java.rmi.server.RMIServerSocketFactory, java.io.Serializable

ssh.SSHSocket 170

An adaptor to use my SSH channels with RMI from JDK 1.2, where your own
socket factories can supply the channels over which RMI communicates.

Constructors
public SSHServerSocketFactory(ssh.SSHContext context)

Methods
public ServerSocket createServerSocket(int port)

Class SSHSocket

public class SSHSocket
extends java.net.Socket
implements KeyedSocket, SRPConstants

This class implements a simple encrypted channel, based on the ssh protocol. This
class actually implements both halves; a SSHServerSocket is just a thing that
accept()s requests and creates one of these SSHSockets in server mode to handle the
server side of a connection.

Several features are left out (man-in-the-middle and privacy defenses); this is okay
for my purposes, since I implement and verify those services in a higher layer based
on my restricted-delegation logic.

Source: based on ClientProtocol.java, my Java implementation of ssh 1.5.

@author Jon Howell <jonh@cs.dartmouth.edu>

Fields
public static String protocolVersion

Constructors
public SSHSocket(ssh.SSHContext context, java.net.InetAddress remoteAddress,
int remotePort)
public SSHSocket(ssh.SSHContext context, java.net.InetAddress remoteAddress,
int remotePort, java.net.InetAddress localAddress, int localPort)

Usage Initiates a client-end connection to a remote server. (”client-end” just
means that we run the client’s end of the protocol.)

public SSHSocket(ssh.SSHContext context, java.lang.String remoteHost, int
remotePort)

Methods
public void close()

Usage Make sure encrypted stream gets flushed cleanly.

public InputStream getInputStream()
public RSAKey getOppositeKey()

ssh.StreamExtras 171

Usage How to find out what public key identifies the other end of this connection.

public OutputStream getOutputStream()
public void initClient()
public static void main(java.lang.String []args)
public static void setBorrowingAllowed(boolean state)
public static RSAKey whoCalledMe()

Usage If you are a remote object implementation, you may call this to learn the
RSAKey public key identity that authenticated the calling end of this socket.
That is, in speaks-for terms, the principal returned by whoCalledMe() ”says”
remoteMethod(arguments...). If you call this from another method, be aware
of what thread you’re in. This call does its dirty work by matching the current
thread with the Thread that ”answered” the incoming Socket connection. So
if you might be on the other side of a queue (in a different Thread) than the
original RMI call, this call may return null, or worse yet, a meaningless key.

Class StdinPasswordAuthenticator
public class StdinPasswordAuthenticator
extends ssh.PasswordAuthenticator

A StdinPasswordAuthenticator asks the user for his password (on stdin) when it is
required. Note that Java has no provision for turning off echoing of characters on
stdin.

Source: for ssh protocol definition: draft-ylonen-ssh-protocol-00.txt especially pages
13, 21.

@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public StdinPasswordAuthenticator()

Methods
public void authenticate(ssh.BinaryPacketInputStream binaryIn,
ssh.BinaryPacketOutputStream binaryOut)

Class StreamExtras

public class StreamExtras
extends java.lang.Object

Tools used to work with BigIntegers on DataInput and DataOutput streams.

Constructors
public StreamExtras()

Methods
public static BigInteger readBigInteger(java.io.DataInput dis)

ssh.Terminal 172

Usage Reads a BigInteger from the stream in the form specified by the ssh 1.5
internet-draft.

public static void writeBigInteger(java.io.DataOutput dos, java.math.BigInteger
bi)

Usage Writes a BigInteger to the stream in the form specified by the ssh 1.5
internet-draft.

Class Terminal
public class Terminal
extends java.lang.Object

Use my ssh protocol to connect to an sshd server.

Warning: this class does no checking of the authenticity of the remote host’s
public key.

It does allow the user to authenticate to the host using a password, of course, since
the host will not allow the connection without some form of user authentication.
Warning: the password is echoed to the console.

The class spawns two threads that

• read data from System.in and write it to an OutputStream, and

• read data from some InputStream and write it to System.out.

Another thread wakes up periodically to do nothing, which works around a bug in
System.in, to keep it from blocking all the other threads.

BUGS: System.in can’t read in increments smaller than a line.

@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public Terminal(java.io.InputStream in, java.io.OutputStream out)

Package ssh.RSA

This package is my own implementation of RSA encryption for my ssh class. It is
factored out neatly because I figured something like the Java Cryptography
Extension (JCE) would come along to replace it.

@todo Replace with JCE calls. Use cryptix, or turn this package into a JCE
provider.

@author jonh@cs.dartmouth.edu

173

ssh.RSA.RSAKey 174

Classes

Class Keygen
public class Keygen
extends java.lang.Object

RSA.Keygen: generates new RSA keys.

Source: modeled after ssh-1.2.22/rsa.c:rsa generate key()

@author Jon Howell jonh@cs.dartmouth.edu

Methods
public static RSAKey generateKeys(int bits, ssh.SshRandom random)
public static RSAKey generateKeys(ssh.SshRandom random)

Class main

public class main
extends java.lang.Object

A Unix command-line interface for creating new RSA key pairs.

Constructors
public main()

Methods
public static void main(java.lang.String []args)

Class RSAKey

public class RSAKey
extends java.lang.Object
implements java.io.Serializable, java.security.interfaces.RSAPublicKey,
java.security.interfaces.RSAPrivateKey

The RSAKey class holds half of an RSA key pair, and performs RSA encryption
and decryption (or signing and verifying) operations.

@author Jon Howell <jonh@cs.dartmouth.edu>

Serializable Fields
public int bits
public BigInteger exponent
public BigInteger modulus

Constructors
public RSAKey()

Methods
public BigInteger cryptBasic(java.math.BigInteger input)

ssh.RSA.test 175

public byte decrypt(java.math.BigInteger input)
public BigInteger encrypt(byte []from, int fromoff, int fromlen, ssh.SshRandom
random)
public BigInteger encrypt(byte []from, ssh.SshRandom random)
public boolean equals(java.lang.Object o)
public static RSAKey fromRSAPrivateKey(java.security.interfaces.RSAPrivateKey
pk)
public static RSAKey fromRSAPublicKey(java.security.interfaces.RSAPublicKey pk
)
public String getAlgorithm()
public byte getEncoded()
public String getFormat()
public BigInteger getModulus()
public BigInteger getPrivateExponent()
public BigInteger getPublicExponent()
public int hashCode()
public static RSAKey nullKey()
public BigInteger randomPad(byte []from, int fromoff, int fromlen, ssh.SshRandom
random)
public void readAsciiSsh(java.io.InputStream is)
public static RSAKey readSerialized(java.io.DataInput di)
public static RSAKey readSsh(java.io.DataInput di)
public byte toByteArray()
public byte unpad(java.math.BigInteger input)
public void writeSerialized(java.io.DataOutput dop)
public void writeSsh(java.io.DataOutput dop)

Class test
public class test
extends java.lang.Object

Routines to test my RSAKey implementation.

Constructors
public test()

Methods
public static void main(java.lang.String []args)

Package ssl

This package consists of wiring to attach the PureTLS implementation of SSL/TLS
to RMI. (See http://www.rtfm.com/puretls/.)

I never got it working robustly; it always had these mysterious long delays. Hence I
stuck with my ssh implementation instead. I abandoned this class before it got far
enough to have support for actual Snowflake protocol; all it does right now is route
RMI messages over SSL channels.

176

ssl.SSLServerSocketFactory 177

Classes

Class SfContext
public class SfContext
extends COM.claymoresystems.ptls.SSLContext

An SSLContext with some handier functions for Snowflake use, such as for setting
the private/public keypair.

Constructors
public SfContext()

Methods
public void setPrivateKey(java.security.PrivateKey pk)

Class SSLClientSocketFactory
public class SSLClientSocketFactory
extends java.lang.Object
implements java.rmi.server.RMIClientSocketFactory, java.io.Serializable

A SSLClientSocketFactory lives on the client side of the RMI connections, and
creates SSL connections back to the server to transmit RMI messages.

Constructors
public SSLClientSocketFactory()
public SSLClientSocketFactory(COM.claymoresystems.ptls.SSLContext context)

Methods
public Socket createSocket(java.lang.String host, int port)

Class SSLServerSocketFactory

public class SSLServerSocketFactory
extends java.lang.Object
implements java.rmi.server.RMIServerSocketFactory, java.io.Serializable

A factory to create RMI server (listener) sockets. Remote objects specify this
factory class when they invoke UnicastRemoteObject’s constructor to demand that
clients connect to the object via an SSL channel.

Constructors
public SSLServerSocketFactory(COM.claymoresystems.ptls.SSLContext context)

Methods
public ServerSocket createServerSocket(int port)

Package timingexp

This package includes tools for timing parts of Snowflake, both for diagnostic and
evaluative purposes. The primary class for evaluation is GenerateTestCases, which
drives various series of tests of the Snowflake versions of HTTP and RMI.

178

timingexp.GenerateTestCases 179

Interfaces

Interface NullRMICall
public interface NullRMICall
extends java.rmi.Remote

Used with TestJavaOverheads.

Methods
public Object nullMethod()

Interface TestRMICall
public interface TestRMICall
extends java.rmi.Remote

Used with RMIExp.

Methods
public Object requestFile(java.lang.String path)

Interface TestRMIReconfigureIfc
public interface TestRMIReconfigureIfc
extends java.rmi.Remote

An interface for reconfiguring the TestRMIServer between RMIExp experiments.

Methods
public void setCacheNotVeryUseful(boolean state)

Classes

Class Experiment

public abstract class Experiment
extends java.lang.Object

The two classes of experiments, RMIExp and HTTPExp, extend this abstract class.
GenerateTestCases uses this class as a generic way to invoke either kind of
experiment.

Constructors
public Experiment()

Class GenerateTestCases
public class GenerateTestCases
extends java.lang.Object

GenerateTestCases is the master test harness for the timings in the Measurement
chapter of my thesis. It produces all permutations of variables in several

timingexp.RMIExp 180

dimensions, then kicks out the cases we can’t or don’t want to test (not applicable,
unimplemented, or too slow). The resulting list is indexed by ”test case number,” so
we can specify an integer to skip over some preceding number of tests.

The Overview for this manual tells how to reproduce specific experiments from the
dissertation.

Constructors
public GenerateTestCases()

Methods
public void axis(java.lang.String optName, int []values)
public void axis(java.lang.String optName, java.lang.Object value)
public void axis(java.lang.String optName, java.lang.Object []values)
public void dmain(java.lang.String []args)
public static void main(java.lang.String []args)

Class HttpExp
public class HttpExp
extends timingexp.Experiment

A class of experiments that measure the relative speeds of various types of HTTP
requests.

Fields
public static Timeline timeline

Methods
public static void main(java.lang.String []args)
public Options optionsFactory()

Usage Create a default Options object, which the GenerateTestCases harness will
populate with the actual options.

public void runExperiment(Tools.Options opts)

Class NullRMICallImpl

public class NullRMICallImpl
extends java.rmi.server.UnicastRemoteObject
implements NullRMICall

Used with TestJavaOverheads

Constructors
public NullRMICallImpl()

Methods
public Object nullMethod()

timingexp.TestRMICallBasic 181

Class RMIExp

public class RMIExp
extends timingexp.Experiment

A class of experiments to measure the performance of RMI, RMI/ssh, RMI/Sf,
maybe later RMI/SSL.

Fields
public static Timeline timeline

Methods
public void flushChannels()
public static void main(java.lang.String []args)
public Options optionsFactory()

Usage Create a default Options object, which the GenerateTestCases harness will
populate with the actual options.

public void runExperiment(Tools.Options opts)

Class TestJavaOverheads
public class TestJavaOverheads
extends java.lang.Object

Get some rough estimates on overheads of Java for “performance of name
resolution” thesis section (2.5.4)

Methods
public static void main(java.lang.String []args)
public void realMain()

Class TestResult

public class TestResult
extends java.lang.Object
implements java.io.Serializable

A debugging class used to ensure that the Test RMI interface was really
transmitting the bytes it claimed to be transmitting.

Constructors
public TestResult(byte []buf)

Methods
public static int cheesyChecksum(byte []b)
public void verify()

Class TestRMICallBasic

public class TestRMICallBasic
extends timingexp.TestRMICallImpl

timingexp.TestRMICallSsh 182

Just a basic RMI connection; no authorization framework. Used with RMIExp.

Constructors
public TestRMICallBasic()

Usage Create an RMI-only object.

Methods
protected void checkAuth()

Class TestRMICallImpl
public abstract class TestRMICallImpl
extends java.rmi.server.UnicastRemoteObject
implements TestRMICall

A Snowflake-authorized version of TestRMICall, used with RMIExp.

The ssh/Snowflake code in here was basically stripped from
relational.InternalDatabase.

Constructors
protected TestRMICallImpl()
protected TestRMICallImpl(int port, java.rmi.server.RMIClientSocketFactory csf,
java.rmi.server.RMIServerSocketFactory ssf)

Methods
public Object requestFile(java.lang.String path)

Class TestRMICallSf
public class TestRMICallSf
extends timingexp.TestRMICallSsh

RMI over Snowflake.

Constructors
public TestRMICallSf(ssh.SSHContext context, sdsi.SDSIPrincipal serverIssuer)

Usage Create an RMI-over-Snowflake object.

Methods
public Object requestFile(java.lang.String path)

Class TestRMICallSsh

public class TestRMICallSsh
extends timingexp.TestRMICallImpl

RMI over ssh.

Constructors
public TestRMICallSsh(ssh.SSHContext context)

timingexp.TheRace 183

Usage Create an RMI-over-SSH object.

Class TestRMICallSsl

public class TestRMICallSsl
extends timingexp.TestRMICallImpl

RMI over SSL.

Constructors
public TestRMICallSsl(COM.claymoresystems.ptls.SSLContext context)

Usage Create an RMI-over-SSL object.

Class TestRMIReconfigure

public class TestRMIReconfigure
extends java.rmi.server.UnicastRemoteObject
implements TestRMIReconfigureIfc

A remote object for reconfiguring the TestRMIServer between RMIExp experiments.

Constructors
public TestRMIReconfigure()

Methods
public void setCacheNotVeryUseful(boolean state)

Class TestRMIServer

public class TestRMIServer
extends java.lang.Object

The server side of the RMI performance test harness. Sets up one object of each
type to be served; analogous to the fourServers mode of SecureServerConfig.

Methods
public static void main(java.lang.String []args)

Class TheRace

public class TheRace
extends java.lang.Object

A race between base64’ing a canonical sexp and to/from readable strings. I was
trying to decide whether it was cheaper to transmit canonical S-expressions in
Base64, or to use the advanced S-expression encoding. It turned out not to matter
much; the overhead is dominated by the generally abysmal S-expression parsing
code.

Constructors
public TheRace()

timingexp.Timeline 184

Methods
public static void main(java.lang.String []args)
public void realMain(java.lang.String []args)

Class Timeline

public class Timeline
extends java.lang.Object

A debugging tool. Used to look for big delays in a code path, delays on the order of
several milliseconds. Amazing how many such huge delays there are floating around
in the sdsi package and elsewhere.

When called from the command line, run all three processes (proxy, mail servlet,
secure-database) in a single process, and let them all demarcate times on the same
timeline. Of course, this’ll screw things up since some ssh/RMI will be optimized
away...

Constructors
public Timeline()

Methods
public static NumberFormat getNF()
public static void main(java.lang.String []argv)
public static void timePoint(java.lang.String desc)
public static void zeroTimer()

Package Tools

A collection of miscellaneous tools that do not belong in any other package. Many
are debugging tools.

185

Tools.Assert 186

Interfaces

Interface BinarySearch.Test
public static interface BinarySearch.Test

Users of BinarySearch must implement the Test class to report the true/false values
for any given integer.

Methods
public boolean test(int value)

Usage return false for smaller values and true for values larger than or equal to the
desired value.

Classes

Class Arrays
public class Arrays
extends java.lang.Object

Tools to manipulate arrays. Some of these are obsolete with the introduction of
java.util.Arrays in JDK 1.2.

Constructors
public Arrays()

Methods
public static String dumpBytes(byte []bytes)
public static String dumpBytes(byte []bytes, int off, int len)
public static boolean equals(byte []a, byte []b)
public static void setByteArray(byte []a, byte val, int start, int length)
public static void setIntArray(int []a, int val, int start, int length)
public static void zeroByteArray(byte []a)
public static void zeroByteArray(byte []a, int start, int length)
public static void zeroIntArray(int []a)
public static void zeroIntArray(int []a, int start, int length)

Class Assert

public class Assert
extends java.lang.Object

A simple assertion-checking call that throws a RuntimeException if the check fails.
Java provides no way to “compile these out,” so you’ll always be doing whatever
work you do to generate the boolean condition you’re testing. But by using a
consistent method call, you can later mechanically remove the checks for

Tools.ByteBuffer 187

performance. Using this method is just a way of indicating “this is an optional test
to make debugging easier.”

Constructors
public Assert()

Methods
public static void assert(boolean premise)
public static void assert(boolean premise, java.lang.String s)
public static boolean getEnabled()

Class BinarySearch
public class BinarySearch
extends java.lang.Object

Perform a binary search over bounded or unbounded integer intervals.

Constructors
public BinarySearch()

Methods
public static int interval(int min, int max, Tools.BinarySearch.Test test)

Usage Search a bounded interval. The interval includes min and max.

public static void main(java.lang.String []args)
public static int unbounded(int bound, boolean searchAbove,
Tools.BinarySearch.Test test)

Parameters
bound - The known bound
searchAbove - When true, bound represents the min bound of the search

space.
test - The closure object that knows the truth value at any given int.

test.test(x)==false && test.test(y)==true should always imply x<y.

Class ByteBuffer
public class ByteBuffer
extends java.lang.Object

The byte[] analog of StringBuffer. Lets a tree of data structures recursively generate
a linearized representation of the data structure without repeated byte[] allocations,
copies, and deletions. This code actually does reallocate and copy the byte[], of
course, but only log n times, and starting with a pretty big buffer.

@author jonh@cs.dartmouth.edu

Constructors
public ByteBuffer()

Tools.ChainInputStream 188

public ByteBuffer(int initialAllocation)

Methods
public void append(byte b)

Usage Append a single byte to the end of the buffer.

public void append(byte []inBuf)

Usage Append a byte array to the end of the buffer.

public void append(byte []inBuf, int inOff, int inLen)

Usage Append part of a byte array to the end of the buffer.

public boolean equals(java.lang.Object o)
public byte getRawBytes()

Usage These three methods let you get at the byte array itself without making a
data copy. Useful, for example, if you just want to write() it directly to a
socket. Note that getRawBytes() has reference semantics: if you dink around
with the returned buffer, you’ll change the contents of this ByteBuffer object.
TODO: Perhaps I should make these methods ’protected’ in this class, and
create a subclass RawByteBuffer that exposes them?

public int getRawOffset()
public int hashCode()
public int length()
protected void reallocate(int minLength)

Usage Reallocate the internal buffer. Invariant: when this call returns, buf.length
>= minLength, and off hasn’t changed.

public byte toByteArray()

Usage Returns a new byte[] containing the contents of this buffer, trimmed to
length.

public byte toByteArray(byte []outBuf, int outOff)

Usage Copies this.length() bytes into outBuf starting at outOff.

Class ChainInputStream

public class ChainInputStream
extends java.io.InputStream

Builds a “longer” InputStream out of two others. When the first input stream runs
out, read() requests will be satisfied from the second input stream. Supports mark()
and reset(), even across stream boundaries, when both input streams support mark
and reset.

Tools.CRC32 189

Constructors
public ChainInputStream(java.io.InputStream s1, java.io.InputStream s2)

Methods
public int available()
public void close()
public synchronized void mark(int readlimit)
public boolean markSupported()
public int read()
public int read(byte []buf)
public int read(byte []buf, int offset, int length)
public synchronized void reset()
public long skip(long n)

Class CopyStream

public class CopyStream
extends java.lang.Object

Copy an InputStream to an OutputStream. This while() loop idiom seems to turn
up enough that it belongs in a Tools method.

Constructors
public CopyStream()

Methods
public static void copyStream(java.io.InputStream is, java.io.OutputStream os)
public static void copyStream(java.io.InputStream is, java.io.OutputStream os, int
bufSize)

Class CountingFilterOutputStream
public class CountingFilterOutputStream
extends java.io.FilterOutputStream

An OutputStreamFilter that counts the number of bytes written.

Constructors
public CountingFilterOutputStream(java.io.OutputStream out)

Methods
public long getCount()
public void write(byte []b)
public void write(byte []b, int off, int len)
public void write(int b)

Class CRC32

public class CRC32
extends java.lang.Object
implements java.util.zip.Checksum

Tools.DumpProf 190

Computes 32-bit Cyclic Redundancy Checks. Allows the use of arbitrary
polynomials.

Source: The core CRC computation (update()) and the buildTable routine are
based on those in a public-domain Pascal program called ”CRC Calc” by F. Martin
Richardson, Jr. I found his code at
http://www.csd.net/ cgadd/knowbase/CRC0019.HTM Excerpted comments from
his program: Routines for calculations derived with the help of Doctor Dobb’s
Journal #188, MAY 1992. ... This file is hereby commited to the public domain.
Feel free to use it in your development. All I ask is a little recognition if you use it
in your software. Also, if this file is modified in any way and re-distributed, please
retain the credits to the people who wrote the routines.
@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public CRC32()
public CRC32(int polynomial)

Methods
public static long crc32(byte []s)
public long getValue()
public static void main(java.lang.String []args)
public void reset()
public void update(byte []s)
public void update(byte []s, int off, int len)
public void update(int b)

Class DeadManSwitch

public class DeadManSwitch
extends java.lang.Thread

When profiling, the program must exit without a signal. But if you’re trying to
profile an RMI call, you can’t System.exit() before you return() your results, or you
miss the reply time. So this class lets you set a timer, then exit after the return call
has completed.

Methods
public void run()
public static void setTimer(long millis)

Class DumpProf

public class DumpProf
extends java.lang.Object

Send self SIGQUIT to cause -prof info to get dumped to output file. Not sure how
to get it to reset, too; that would be really nice. Better still would be a Java

Tools.HashKey 191

interface to the hprof module.

More in jdk1 2 2-src/src/share/tools/hprof.

Constructors
public DumpProf()

Methods
public static native void dump()

Class Endian

public class Endian
extends java.lang.Object

Tools to transfer multibyte data into and out of byte[] arrays, with either
endianness.

Constructors
public Endian()

Methods
public static int BigGetInt(byte []b, int off)
public static long BigGetLong(byte []b, int off)
public static short BigGetShort(byte []b, int off)
public static void BigPutInt(byte []b, int off, int value)
public static void BigPutLong(byte []b, int off, long value)
public static void BigPutShort(byte []b, int off, short value)
public static int LittleGetInt(byte []b, int off)
public static long LittleGetLong(byte []b, int off)
public static short LittleGetShort(byte []b, int off)
public static void LittlePutInt(byte []b, int off, int value)
public static void LittlePutLong(byte []b, int off, long value)
public static void LittlePutShort(byte []b, int off, short value)

Class HashKey
public class HashKey
extends java.util.Vector

A class used to hash uniquely on a combination of inputs. Two HashKeys are equal
(and have the same hashcode) when the same is true of all of their members,
pairwise.

Constructors
public HashKey()

Methods
public boolean equals(java.lang.Object o)
public int hashCode()

Tools.Log 192

Class Hex

public class Hex
extends java.lang.Object

Tools for manipulating hexadecimal strings.

Constructors
public Hex()

Methods
public static byte bytesToHex(byte []binary)
public static byte hexToBytes(byte []hex)

Class IndentWriter

public class IndentWriter
extends java.io.FilterWriter

A FilterWriter stream that inserts space after each linefeed to indent its output.

@author jonh@cs.dartmouth.edu

Constructors
public IndentWriter(java.io.Writer out)

Methods
public void addIndent(int increment)

Usage Adjust the number of spaces to indent by some (positive or negative)
increment.

public void flush()
public static void main(java.lang.String []args)
public void print(java.lang.String s)
public void println()
public void println(java.lang.String s)
public void setIndent(int depth)

Usage Set the number of spaces to indent to an absolute value.

public void write(char []cbuf, int off, int len)
public void write(int c)
public void write(java.lang.String s)
public void write(java.lang.String str, int off, int len)
protected void writeIndent()

Usage Output depth spaces to indent a line.

protected void writeLine(java.lang.String s, int off, int len)

Tools.LRUHashMap 193

Class Log

public class Log
extends java.lang.Object

Tools for logging messages to the console (or another OutputStream). Messages can
belong to different categories (levels), analogous to syslog.

Constructors
public Log()
public Log(java.io.OutputStream os)
public Log(java.io.OutputStream os, java.lang.String prefix)
public Log(java.lang.String prefix)

Methods
public Log addLevel(java.lang.String level)
public void log(java.lang.String message)
public void log(java.lang.String level, java.lang.String message)
public void logc(java.lang.String level, java.lang.String message)
public OutputStream logs(java.lang.String level)
public boolean logt(java.lang.String level)
public PrintWriter logw(java.lang.String level)
public Log setPrefix(java.lang.String prefix)

Class LRUHashMap

public class LRUHashMap
extends java.util.HashMap

A HashMap that roughly bounds the size of storage consumed, and kicks out keys
whenever they haven’t been accessed in a long time.

@todo A clock algorithm (as in OS buffer cache pages) might be faster in some
situations.

Constructors
public LRUHashMap()
public LRUHashMap(int initialCapacity, int maxOccupancy, float loadFactor)

Parameters
maxOccupancy - - how many keys can live in the LRUHashMap at once.

Eventually this might be in terms of a size() parameter called on the keys.

Methods
public Object clone()
public Object get(java.lang.Object key)
public Object put(java.lang.Object key, java.lang.Object value)

Tools.MD5 194

Usage Sometimes put() will eject other key(s) from the hashtable. (at most one
key until I implement a notion of per-entry size) Note that this class currently
does not allow you to hash null values.

protected void reap()
public Object remove(java.lang.Object key)
public Collection values()

Class MakeDebugClass

public class MakeDebugClass
extends java.lang.Object

Reads a class’ definition using reflection, and spits out a subclass (or
implementation) that adds debugging comments before each method call. Useful for
all sorts of mechanically-generated tweaks to existing classes.

Constructors
public MakeDebugClass()

Methods
public static String javaName(java.lang.Class c)
public static void main(java.lang.String []args)
public void realMain(java.lang.String []args)

Class MD5
public class MD5
extends java.lang.Object

This class computes MD5 hashes.

Introduction: To compute the message digest of a chunk of bytes, create an MD5
object “md5”, call md5.update() as needed on buffers full of bytes, and then call
md5.getValue(), which will fill a supplied 16-byte array with the digest.

A main() method is included that hashes the data on System.in.

It seems to run around 25-30 times slower (JDK1.1.6) than optimized C (gcc -O4,
version 2.7.2.3). Measured on a Sun Ultra 5 (SPARC 270MHz).

SOURCE: Manually translated from some public domain C code (md5.c) included
with the ssh-1.2.22 source. Comments from ssh-1.2.22/md5.c, the basis for this code:

This code has been heavily hacked by Tatu Ylonen <ylo@cs.hut.fi> to make it
compile on machines like Cray that don’t have a 32 bit integer type.

This code implements the MD5 message-digest algorithm. The algorithm is due to

Tools.Mnemonic 195

Ron Rivest. This code was written by Colin Plumb in 1993, no copyright is claimed.
This code is in the public domain; do with it what you wish.

Equivalent code is available from RSA Data Security, Inc. This code has been tested
against that, and is equivalent, except that you don’t need to include two pages of
legalese with every copy.

To compute the message digest of a chunk of bytes, declare an MD5Context
structure, pass it to MD5Init, call MD5Update as needed on buffers full of bytes, and
then call MD5Final, which will fill a supplied 16-byte array with the digest.
@deprecated JCE now includes an interface for computing message digests.
@author Jon Howell <jonh@cs.dartmouth.edu>

Constructors
public MD5()

Methods
public byte getValue()
public void getValue(byte []digest)
public int hashCode()
Usage The hashCode of an MD5 hash is useful in that it doesn’t reveal any more

information about the original hashed object that does MD5. It’s not as useful
for its uniqueness, since it’s only 32 bits long and not 128.

public static void main(java.lang.String []args)
public void update(byte []buf)
public void update(byte []newbuf, int bufstart, int buflen)
public void update(int b)

Class Memory

public class Memory
extends java.lang.Object

A Tool for examining the current amount of memory in use by the JVM. Great for
finding memory “leaks” such as leaving things in hash tables that you didn’t intend.
I first used it to get a handle on how much memory I was using when indexing the
cells in my relational databases.

Constructors
public Memory()

Methods
public double getMB()
public long getMemory()
public void lap()
public String toString()

Tools.NullOutputStream 196

Class Mnemonic

public class Mnemonic
extends java.lang.Object

A class to give a wordy mnemonic to an otherwise meaningless bitstring (say, a hash
value). Returns a string made up of two four-letter words (not like that!), such as
“duke-alma.” There are 1024 words in this class’ vocabulary, so a two-word string is
a mnemonic with 20 bits of uniqueness.

Constructors
public Mnemonic()

Methods
public static String get(long word)
public static String get20(byte []bs)

Class MultiMap
public class MultiMap
extends java.lang.Object

A Map whose members are sets.

Constructors
public MultiMap()

Methods
public void add(java.lang.Object from, java.lang.Object to)

Usage The nicest operation of this class: Add object to to the set of objects
identified by the key from.

public Set getSet(java.lang.Object from)

Usage Get the set of objects associated with the key from.

public Iterator iterator(java.lang.Object from)
public Set keys()
public int size()
public int size(java.lang.Object from)

Class NullOutputStream

public class NullOutputStream
extends java.io.OutputStream

An OutputStream that discards all writes. Boy, that sure was easy to code!

Constructors
public NullOutputStream()

Methods

Tools.Options 197

public void write(byte []b)
public void write(byte []b, int off, int len)
public void write(int b)

Class Options

public class Options
extends java.lang.Object

A tool for parsing options from the command line. Nice because the same definition
is used to determine how options are parsed and generate a helpful usage message.
Can be subclassed to declare the option types.

Fields
public boolean allowExtraOptions

• Does the program allow the user to “make up” option names?

Subclass may set this in defineOptions().

public boolean allowExtraArguments

• Does the program allow the user to append extra unnamed arguments?

Subclass may set this in defineOptions().

public String programName

• What is the program called, so usage() prints something meaningful?

Subclass may set this in defineOptions().

Constructors
public Options()
public Options(java.lang.String []argParam)

Methods
public void defineArgument(java.lang.String argName, boolean required,
java.lang.String description, java.lang.String defaultValue)

Usage Define an argument (an input without an -optName tag)

public void defineOption(java.lang.String optName, java.lang.String description,
java.lang.String defaultValue)

Usage Define an option, a string (argVal) on the command line preceded by
”-argName=argVal” or ”-argName argVal”.

public void defineOptions()

Tools.Perly 198

Usage Subclasses override this method to define the set of acceptable options and
arguments. This method should call defineOption(), defineArgument() to
set up the definitions. Set allowExtraOptions and allowExtraArguments to
control whether extra options and arguments (beyond those defined) are
allowed. Set programName to determine how the program name appears in the
usage() display.

public void defineProgram(java.lang.String programName)

Usage Define the name of this program, as it appears in the usage() display.

public void dumpOptions()
public void dumpOptions(java.io.OutputStream out)
public String get(java.lang.String name)

Usage Get an argument or option by name

public String get(java.lang.String name, java.lang.String defaultValue)

Usage Get an argument or option by name, supplying a dynamic default value.
Useful when an argument or option has a default value that isn’t a static
string, but can be computed by the time the argument is fetched.

public String getArg(int index)

Usage Get an argument by position (0-indexed). Useful if you’re being lazy and
using this class directly, rather than subclassing it to give your arguments
names.

public boolean getBoolean(java.lang.String name)
public int getInt(java.lang.String name)
public void optionError(java.lang.String error)

Usage override this method to do something different that barf on stderr if options
don’t parse out correctly. When you’re done, throw Options.OptionException
to cause option parsing to stop.

public String pad(java.lang.String arg, int len)
public void setOption(java.lang.String optName, java.lang.String optValue)
public void suppressUsage()
public void usage()

Usage Outputs usage info to stderr.

Class Options.OptEntry
public class Options.OptEntry
extends java.lang.Object

Describes an option or an argument.

Tools.PrefixMap 199

Class Perly

public class Perly
extends java.lang.Object

A sort routine and a way to get the list of keys from a Hashtable as a Vector (rather
than a nasty Enumeration).

Constructors
public Perly()

Methods
public static Vector keys(java.util.Hashtable hash)
public static Vector sort(java.util.Vector list)

Class PerThread

public class PerThread
extends java.lang.Object

A tool to organize data that should be stored per-thread. Cannot inherit bindings
when creating subthreads.

@todo I think Java has finally added support for this sort of thing in JDK 1.2 —
look into it and deprecate this class.

Constructors
public PerThread()
public PerThread(java.lang.Object defaultObject)

Methods
public Object get()

Usage Return the object associated with this thread, or the default object if there
is none.

public void set(java.lang.Object object)

Usage Establish the object to associate with the current thread.

public void setDefault(java.lang.Object defaultObject)

Usage Establish which object should be returned on a get() call if no object is yet
defined for the calling thread

Class PrefixMap
public class PrefixMap
extends java.lang.Object

A data structure kind of like a Map, except that the get() operation returns the
stored value associated with the longest key that’s a prefix of the argument key.

Tools.RecordingInputStream 200

I use it to look up information bound to a URL or any prefix of it in
jp.SfUserAgent.

Constructors
public PrefixMap()

Methods
public Object get(java.lang.String key)
public void put(java.lang.String key, java.lang.Object value)

Class ProgressBar
public class ProgressBar
extends java.lang.Object

Display an ASCII progress bar to satiate users during slow operations.

Constructors
public ProgressBar(int range)

Methods
public void done()
protected String update(double frac)
public void update(int value)

Class Props
public class Props
extends java.lang.Object

Print out the system-defined list of Properties.

Constructors
public Props()

Methods
public static void main(java.lang.String []args)

Class RecordingInputStream

public class RecordingInputStream
extends java.io.FilterInputStream

A class that nonintrusively records some section of an input stream as it is read, so
that it may be rewound and ”reviewed” later. This is less ”invasive” than using a
BufferedInputStream, which although it can be rewound, will ”oversuck” the
underlying stream, so that when you’re done with the underlying stream, it’s left in
an undetermined state.

Constructors
public RecordingInputStream(java.io.InputStream is)

Tools.SmallHashset 201

Methods
public byte getRecordingAsBytes()
public InputStream getRecordingAsStream()
public int read()
public int read(byte []p0)
public int read(byte []p0, int p1, int p2)
public long skip(long p0)

Usage Calling skip() while recording has an undefined impact on the recording. It
might record the skipped bytes, or omit them from the recording, or make a
recording of YMCA by the Village People.

public void startRecording()

Usage Start a new recording (clearing any previous recording).

public void stopRecording()

Class SmallHashset

public class SmallHashset
extends java.lang.Object

Used as a (not drop-in) replacement for HashSet (or Hashtable with meaningless
values attached to keys); saves oodles of memory. HashSet uses about 40 bytes per
key – 16 for the Entry structure {hash, key, value, next}, 4 for its Class pointer
(guessing), probably 8 for its mallocing (length, next fields?)... the 40 value was
empirically measured, and includes the unused bucket head slots in the table
(25-62%).

Anyway, so we beat that by trading time for space. Each occupied entry takes only
4 bytes (Object pointer). However, we might spend more time hopping down the
array (HashSet only has to hop down the linked list corresponding to one bucket,
which probabilistically will stay low due to the count/threshold mechanism), and we
don’t save the hashCode() of the keys, so we might spend more time recomputing
those on rehashes. This SmallHashset uses (empirically) about 8 bytes/entry,
accounting for the 25-62% empty table slots.

Increasing loadFactor (bad idea) or decreasing the factor of 2 used when rehashing
will reduce the space requirements further. However, a higher loadFactor increases
(rapidly) the average time spent walking the table, and a lower growth rate
increases the time spent rehashing.

Since my application (indexing) may often involve growing a Hashtable and then
using it read-only, it may pay to add a method to rehash one final time to make a
fairly tight fit.

Tools.TeeOutputStream 202

Constructors
public SmallHashset()
public SmallHashset(int capacity)

Methods
public boolean containsKey(java.lang.Object key)
protected boolean containsKey(java.lang.Object key, int index)
public Iterator getKeyIterator()
public int indexFor(java.lang.Object key)
protected void internalPut(java.lang.Object key, int index)
public void put(java.lang.Object key)
public int size()

Class SnoopyIn

public class SnoopyIn
extends java.io.FilterInputStream

Insert this filter among your InputStreams to have the data passing through the
stream logged with the Log tool.

@classConcise true

Constructors
public SnoopyIn(java.io.InputStream in, Tools.Log log)

Class SnoopyOut

public class SnoopyOut
extends java.io.FilterOutputStream

Insert this filter among your OutputStreams to have the data passing through the
stream logged with the Log tool.

@classConcise true

Constructors
public SnoopyOut(java.io.OutputStream out, Tools.Log log)

Methods
public void comment(java.lang.String s)

Usage Send an explicit message to the log.

Class TeeOutputStream
public class TeeOutputStream
extends java.io.FilterOutputStream

A TeeOutputStream makes a copy of every write onto another stream on the side.

Tools.Timer 203

Note: the primary stream is given first shot at the write; if it throws an exception,
the secondary stream doesn’t see the write.

Constructors
public TeeOutputStream(java.io.OutputStream primary, java.io.OutputStream
secondary)

Methods
public void close()
public void flush()
public void write(byte []b)
public void write(byte []b, int off, int len)
public void write(int b)

Class Text

public class Text
extends java.lang.Object

Yet another tool for indenting text strings.

Constructors
public Text()

Methods
public static String indent(int d)
public static String indent(int d, java.lang.String s)
protected static String realIndent(int d)

Class ThreadTool

public class ThreadTool
extends java.lang.Object

A debugging tool for figuring out which code is running in which thread.

Constructors
public ThreadTool()

Methods
public static void threadInfo()

Class Timer

public class Timer
extends java.lang.Object

A tool for inspecting the current process and wall-clock times. I use it both for
analyzing slow code and for running the experiments in the timingexp package.

Fields
public static int utimeOff

Tools.Options.OptionException 204

public static int stimeOff
public static int cutimeOff
public static int cstimeOff
public static int clkTckOff
public static int wallSec
public static int wallNsec

Constructors
public Timer()

Methods
public float cstime()
public float cutime()
public static NumberFormat getNF()
public float getTime(int i)
public void lap()
public void reset()
public float stime()
public static native long syscallTimes()
public String toString()
public void unlap()

Usage Use this method after reading out the time to continue timing from the
same start point.

public float utime()
public double wallTime()

Exceptions

Interface Options.OptionException

public static class Options.OptionException
extends java.lang.Exception

Thrown to alert application that option parsing failed and the user should be
notified. The default constructor handles this exception automatically so that most
applications can ignore it.

Constructors
public Options.OptionException()

Package ws

The ws package is a plugin for an IBM Research Web Intermediaries (WBI) proxy
to implement the client side of Snowflake/SDSI-based web authorization. (See
http://www.almaden.ibm.com/cs/wbi/.) This was a first cut, but it turns out
WBI is not an easy way to write a web proxy. Jetty turned out to be much easier;
that proxy appears in the jp package.

@author jonh@cs.dartmouth.edu

205

Appendix F

Experimental data

In this appendix, I present the experimental data from which the tables in Chapter 12
derive. On each page, I plot the data points observed. The plot legend groups the
data points into a few categories; within each category, only the dependent variable
labeled on the x axis changes from one experiment to the next. The variables section
describes the parameters that characterize each category, and the constants section
lists the parameters that were held constant for every data point plotted on that page.

Each plot is accompanied by a small plot of the coefficients of variation (C.V.s).
Each point on the C.V. plot is the C.V. of the nine runs with identical values indicated
by the symbol and x-value of the plotted point. The C.V.s are presented to give an
idea about the noise present in an individual experimental configuration.

I explored different dimensions of the parameter space to extract meaningful mea-
surements of the system. The index in Table F.1 connects the summary table in
Chapter 12 to the experiment number of the raw data shown on the following pages.
For example, Table 12.6 measures the costs associated with authorizing a Snowflake
HTTP client to a server; Table F.1 indicates that experiments 1 and 2 explore the
corresponding part of the experimental parameter space. By examining the variables
in experiments 1 and 2, we see that the per-byte copy cost is determined by varying
the fileLength and computing the slope (b1). The costs associated with “signed,”
“identical,” and “MAC opt” authorization are discovered by varying the identical-
Requests and useMacs experimental variables. The performance difference due to
network locality is measured by performing the same set of experiments on a local
machine versus a remote machine; this difference distinguishes Experiment 1 from
Experiment 2.

I define each experimental variable below.

authenticateServer (boolean) In Snowflake experiments, the client expects and
verifies the server’s proof of the document’s authenticity, and maps the issuer
of that proof to a final principal in the client’s Prover. A final principal is
one that the client controls, such as a public key for which the Prover has the
corresponding private key.

206

Table Experiments
Table 12.2 23, 24
Table 12.3 25, 26
Table 12.4 17, 18, 3, 4
Table 12.5 10, 11
Table 12.6 1, 2
Table 12.7 19, 20
Table 12.8 13, 14, 15, 16
Table 12.9 8, 9

Table F.1: The correspondence between summary tables and the experimental data
they summarize

cacheContext (boolean) In SSL experiments, the SSL context object is reused
for each request. This reuse amortizes the cost of loading certificates.

cacheSessions (boolean) In SSL experiments, the SSL session-caching optimiza-
tion is enabled, amortizing the public-key encryptions required to establish a
session.

cacheSigns (boolean) In Snowflake experiments, the server caches its signatures
on documents until the modification date on the document file changes.

client When set to “fastget,” the client is my trivial C HTTP client. Otherwise,
the client is my Java client using Jetty stream- and header-parsing tools.

clientCachesProofs (boolean) In Snowflake RMI experiments, the client caches
any proofs it generates in its Prover, amortizing the cost of the public-key
encryption used to sign the delegation.

experimentType When set to “RMIExp,” the experimental operation is an RMI
transaction; otherwise, it is an HTTP transaction.

fileLength (integer, bytes) The length of user data returned by the experimental
operation.

identicalRequests (boolean) In HTTP experiments, when this variable is false,
the client increments the value in an extraneous header to ensure that the
request differs from previous requests so that a proof of the authority of the
previous request cannot be directly reused for the current request.

locality When this value is “local,” the client and server process are colocated
on the same host; when it is “remote,” they are separated by a shared 10Mbps
Ethernet segment.

207

numberOfConnections (integer) This value indicates the number of times the
client connects to the server in a single run. A “run” is the set of experimental
operations whose total wall-clock runtime appears as a data point in the plots
that follow.

port (integer) The port number of the experimental server handling the request;
this is an internal value determined by the socket and server variables.

protocol In HTTP experiments, this value indicates whether I use HTTP/1.0 or
HTTP/1.1 requests.

registryService When this value is “TestRMIServer0,” the RMI calls are trans-
mitted on plain TCP sockets. When it is “TestRMIServer2,” the RMI calls
are transmitted using my SshSocketFactory sockets. When it is “TestRMIS-
erver3,” the calls use SshSocketFactory sockets, and the authority of the client
is challenged using the Snowflake protocol.

requestsPerConnection (integer) In an HTTP experiment, the number of re-
quests sent over a single connection before the connection is discarded. This
variable is always 1 if the protocol is not HTTP/1.1.

server In an HTTP experiment, a value of “apache” indicates that the HTTP
server is Apache. A value of “simple” indicates a simple Java web server using
the java.io.Socket interface and trivial request parsing. A value of “Jetty”
indicates a Java Jetty server with either the standard Jetty file handler or our
file servlet adapted to understand Snowflake HTTP.

serverCachesProofs (boolean) In an RMI experiment, the server caches autho-
rization proofs received from the client to amortize transmission, parsing, and
verification time.

signFiles (boolean) In Snowflake experiments, the server signs delegations proving
the authority of files it serves to the client.

socket In HTTP experiments, a value of “plain” indicates a plain TCP socket,
and a value of “SSL” indicates an SSL socket.

uri (string) A value derived from fileLength used internally to execute HTTP
experiments; it is irrelevant for purposes of analysis.

useMacs (boolean) In Snowflake HTTP experiments, the client requests a secret
MAC to enable inexpensive hash-based request authorization.

useSnowflake (boolean) In HTTP experiments, indicates that Snowflake is used
to authorize the client’s request.

208

Experiment 1

Variables:
c identicalRequests=false useMacs=false authenticateServer=false

σ=10.4ms R2=0.21 b0=384.61 ± 0.0 ms b1=186.98 ± 0.0 ms/MB
b identicalRequests=false useMacs=true authenticateServer=false

σ= 1.6ms R2=0.97 b0=109.15 ± 0.0 ms b1=299.40 ± 0.0 ms/MB
a identicalRequests=true useMacs=true authenticateServer=false

σ= 1.9ms R2=0.95 b0=80.79 ± 0.0 ms b1=301.49 ± 0.0 ms/MB

Constants:

authenticateServer false
cacheSigns false

numberOfConnections 10
port 8041

protocol 1.0
requestsPerConnection 1

server simple
signFiles false
socket plain

useSnowflake true
network locality local

10
2

10
3

10
4

10
5

0

100

200

300

400

500

600

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

209

Experiment 2

Variables:
c identicalRequests=false useMacs=false authenticateServer=false

σ= 8.8ms R2=0.91 b0=383.77 ± 0.0 ms b1=982.02 ± 0.0 ms/MB
b identicalRequests=false useMacs=true authenticateServer=false

σ= 1.7ms R2=1.00 b0=109.67 ± 0.0 ms b1=994.38 ± 0.0 ms/MB
a identicalRequests=true useMacs=true authenticateServer=false

σ=12.7ms R2=0.81 b0=85.04 ± 0.0 ms b1=918.10 ± 0.0 ms/MB

Constants:

authenticateServer false
cacheSigns false

numberOfConnections 10
port 8041

protocol 1.0
requestsPerConnection 1

server simple
signFiles false
socket plain

useSnowflake true
network locality remote

10
2

10
3

10
4

10
5

0

100

200

300

400

500

600

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

210

Experiment 3

Variables:
c server=Jetty

σ= 2.3ms R2=0.90 b0=25.22 ± 0.0 ms b1=242.83 ± 0.0 ms/MB
b server=simple

σ= 1.0ms R2=0.96 b0=16.95 ± 0.0 ms b1=181.94 ± 0.0 ms/MB
a server=apache

σ= 0.9ms R2=0.89 b0=10.70 ± 0.0 ms b1=93.16 ± 0.0 ms/MB

Constants:

cacheContext true
cacheSessions true

numberOfConnections 20
protocol 1.0

requestsPerConnection 1
socket plain

useSnowflake false
network locality local

10
2

10
3

10
4

10
5

0

50

100

150

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

211

Experiment 4

Variables:
c server=Jetty

σ= 6.1ms R2=0.96 b0=23.98 ± 0.0 ms b1=1047.05 ± 0.0 ms/MB
b server=simple

σ= 0.7ms R2=1.00 b0=17.07 ± 0.0 ms b1=976.40 ± 0.0 ms/MB
a server=apache

σ= 0.5ms R2=1.00 b0=10.09 ± 0.0 ms b1=948.42 ± 0.0 ms/MB

Constants:

cacheContext true
cacheSessions true

numberOfConnections 20
protocol 1.0

requestsPerConnection 1
socket plain

useSnowflake false
network locality remote

10
2

10
3

10
4

10
5

0

50

100

150

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

212

Experiment 8

Variables:
b server=Jetty fileLength=000100

σ=45.2ms R2=0.98 b0=263.56 ± 0.2 ms b1=47.13 ± 0.0 ms/req
a server=apache fileLength=000100

σ=19.4ms R2=0.96 b0=130.41 ± 0.0 ms b1=14.44 ± 0.0 ms/req

Constants:

cacheContext true
cacheSessions true

fileLength 000100
numberOfConnections 10

protocol 1.1
socket SSL
uri /timing/data-000100.txt

useSnowflake false
network locality local

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

requestsPerConnectionNum (req)

tim
eP

er
C

on
ne

ct
io

n
(m

s)

b
a

0 5 10 15 20
0

0.1

0.2

0.3
CVs

213

Experiment 9

Variables:
b server=Jetty fileLength=000100

σ= 8.5ms R2=1.00 b0=235.04 ± 0.0 ms b1=46.39 ± 0.0 ms/req
a server=apache fileLength=000100

σ=26.0ms R2=0.93 b0=172.62 ± 0.1 ms b1=13.73 ± 0.0 ms/req

Constants:

cacheContext true
cacheSessions true

fileLength 000100
numberOfConnections 10

protocol 1.1
socket SSL
uri /timing/data-000100.txt

useSnowflake false
network locality remote

0 2 4 6 8 10 12 14 16 18 20
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

requestsPerConnectionNum (req)

tim
eP

er
C

on
ne

ct
io

n
(m

s)

b
a

0 5 10 15 20
0

0.1

0.2

0.3
CVs

214

Experiment 10

Variables:
b server=Jetty fileLength=000100

σ= 2.0ms R2=1.00 b0=10.39 ± 0.0 ms b1=22.24 ± 0.0 ms/req
a server=apache fileLength=000100

σ= 1.6ms R2=1.00 b0= 4.27 ± 0.0 ms b1= 4.56 ± 0.0 ms/req

Constants:

cacheContext true
cacheSessions true

numberOfConnections 10
protocol 1.1
socket plain

useSnowflake false
network locality local

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

requestsPerConnectionNum (req)

tim
eP

er
C

on
ne

ct
io

n
(m

s)

b
a

0 5 10 15 20
0

0.1

0.2

0.3
CVs

215

Experiment 11

Variables:
b server=Jetty fileLength=000100

σ= 9.9ms R2=1.00 b0=15.76 ± 0.0 ms b1=27.90 ± 0.0 ms/req
a server=apache fileLength=000100

σ= 0.8ms R2=1.00 b0= 3.64 ± 0.0 ms b1= 4.54 ± 0.0 ms/req

Constants:

cacheContext true
cacheSessions true

numberOfConnections 10
protocol 1.1
socket plain

useSnowflake false
network locality remote

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

400

500

600

700

requestsPerConnectionNum (req)

tim
eP

er
C

on
ne

ct
io

n
(m

s)

b
a

0 5 10 15 20
0

0.1

0.2

0.3
CVs

216

Experiment 13

Variables:
c server=apache cacheContext=false cacheSessions=false

σ=25.5ms R2=1.00 b0=248.43 ± 0.0 ms b1=10990.02 ± 0.0 ms/MB
b server=apache cacheContext=true cacheSessions=false

σ=16.4ms R2=1.00 b0=227.30 ± 0.0 ms b1=11367.80 ± 0.0 ms/MB
a server=apache cacheContext=true cacheSessions=true

σ=10.9ms R2=1.00 b0=136.68 ± 0.0 ms b1=11002.26 ± 0.0 ms/MB

Constants:

numberOfConnections 10
protocol 1.1

requestsPerConnection 1
socket SSL

useSnowflake false
network locality local

10
2

10
3

10
4

10
5

0

500

1000

1500

2000

2500

3000

3500

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

217

Experiment 14

Variables:
c server=Jetty cacheContext=false cacheSessions=false

σ=30.6ms R2=1.00 b0=422.05 ± 0.0 ms b1=23943.09 ± 0.0 ms/MB
b server=Jetty cacheContext=true cacheSessions=false

σ=23.0ms R2=1.00 b0=393.45 ± 0.0 ms b1=24760.23 ± 0.0 ms/MB
a server=Jetty cacheContext=true cacheSessions=true

σ=45.0ms R2=1.00 b0=288.01 ± 0.1 ms b1=24117.47 ± 0.0 ms/MB

Constants:

numberOfConnections 10
protocol 1.1

requestsPerConnection 1
socket SSL

useSnowflake false
network locality local

10
2

10
3

10
4

10
5

0

500

1000

1500

2000

2500

3000

3500

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

218

Experiment 15

Variables:
c server=apache cacheContext=false cacheSessions=false

σ= 9.0ms R2=1.00 b0=233.56 ± 0.0 ms b1=10815.11 ± 0.0 ms/MB
b server=apache cacheContext=true cacheSessions=false

σ=20.6ms R2=1.00 b0=216.44 ± 0.0 ms b1=11331.84 ± 0.0 ms/MB
a server=apache cacheContext=true cacheSessions=true

σ= 9.8ms R2=1.00 b0=184.08 ± 0.0 ms b1=10916.32 ± 0.0 ms/MB

Constants:

numberOfConnections 10
protocol 1.1

requestsPerConnection 1
socket SSL

useSnowflake false
network locality remote

10
2

10
3

10
4

10
5

0

500

1000

1500

2000

2500

3000

3500

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

219

Experiment 16

Variables:
c server=Jetty cacheContext=false cacheSessions=false

σ=23.1ms R2=1.00 b0=436.01 ± 0.0 ms b1=11624.15 ± 0.0 ms/MB
b server=Jetty cacheContext=true cacheSessions=false

σ=37.0ms R2=0.99 b0=421.37 ± 0.1 ms b1=11723.18 ± 0.0 ms/MB
a server=Jetty cacheContext=true cacheSessions=true

σ=45.9ms R2=0.99 b0=303.33 ± 0.1 ms b1=12624.89 ± 0.0 ms/MB

Constants:

numberOfConnections 10
protocol 1.1

requestsPerConnection 1
socket SSL

useSnowflake false
network locality remote

10
2

10
3

10
4

10
5

0

500

1000

1500

2000

2500

3000

3500

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

220

Experiment 17

Variables:
a server=apache

σ= 0.3ms R2=0.98 b0= 4.64 ± 0.0 ms b1=61.05 ± 0.0 ms/MB

Constants:

client fastget
numberOfConnections 200

protocol 1.1
server apache

network locality local

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

7

8

9

10

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

221

Experiment 18

Variables:
a server=apache

σ= 0.6ms R2=1.00 b0= 4.79 ± 0.0 ms b1=956.89 ± 0.0 ms/MB

Constants:

client fastget
numberOfConnections 200

protocol 1.1
server apache

network locality remote

10
2

10
3

10
4

10
5

0

10

20

30

40

50

60

70

80

90

100

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

222

Experiment 19

Variables:
d authenticateServer=true signFiles=true cacheSigns=false

σ= 9.6ms R2=0.95 b0=485.52 ± 0.0 ms b1=1197.81 ± 0.0 ms/MB
b authenticateServer=false signFiles=true cacheSigns=false

σ= 7.0ms R2=0.93 b0=425.38 ± 0.0 ms b1=764.17 ± 0.0 ms/MB
e authenticateServer=true signFiles=true cacheSigns=true

σ=13.6ms R2=0.68 b0=159.99 ± 0.0 ms b1=563.97 ± 0.0 ms/MB
c authenticateServer=false signFiles=true cacheSigns=true

σ= 1.9ms R2=0.97 b0=99.13 ± 0.0 ms b1=299.95 ± 0.0 ms/MB
a authenticateServer=false signFiles=false cacheSigns=false

σ= 2.2ms R2=0.96 b0=86.04 ± 0.0 ms b1=293.03 ± 0.0 ms/MB

Constants:

identicalRequests true
numberOfConnections 10

port 8041
protocol 1.0

requestsPerConnection 1
server simple
socket plain

useMacs true
useSnowflake true

network locality local

10
2

10
3

10
4

10
5

0

100

200

300

400

500

600

700

800

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

d
b
e
c
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

223

Experiment 20

Variables:
d authenticateServer=true signFiles=true cacheSigns=false

σ=10.7ms R2=0.97 b0=481.71 ± 0.0 ms b1=1757.37 ± 0.0 ms/MB
b authenticateServer=false signFiles=true cacheSigns=false

σ= 9.0ms R2=0.97 b0=426.82 ± 0.0 ms b1=1397.21 ± 0.0 ms/MB
e authenticateServer=true signFiles=true cacheSigns=true

σ= 5.2ms R2=0.99 b0=153.42 ± 0.0 ms b1=1321.35 ± 0.0 ms/MB
c authenticateServer=false signFiles=true cacheSigns=true

σ= 5.5ms R2=0.97 b0=100.11 ± 0.0 ms b1=910.74 ± 0.0 ms/MB
a authenticateServer=false signFiles=false cacheSigns=false

σ= 1.9ms R2=1.00 b0=83.64 ± 0.0 ms b1=955.37 ± 0.0 ms/MB

Constants:

identicalRequests true
numberOfConnections 10

port 8041
protocol 1.0

requestsPerConnection 1
server simple
socket plain

useMacs true
useSnowflake true

network locality remote

10
2

10
3

10
4

10
5

0

100

200

300

400

500

600

700

800

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

d
b
e
c
a

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

224

Experiment 23

Variables:
c registryService=TestRMIServer3

σ= 6.7ms R2=1.00 b0=17.90 ± 0.0 ms b1=6083.68 ± 0.0 ms/MB
b registryService=TestRMIServer2

σ= 4.4ms R2=1.00 b0=12.67 ± 0.0 ms b1=6097.16 ± 0.0 ms/MB
a registryService=TestRMIServer0

σ= 5.7ms R2=0.96 b0= 4.78 ± 0.0 ms b1=994.51 ± 0.0 ms/MB

Constants:

experimentType RMIExp
numberOfConnections 100

port 8143
requestsPerConnection 1

network locality local

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

100

200

300

400

500

600

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

0 2 4 6 8 10
0

0.1

0.2

0.3
CVs

225

Experiment 24

Variables:
c registryService=TestRMIServer3

σ= 5.3ms R2=1.00 b0=16.44 ± 0.0 ms b1=3852.20 ± 0.0 ms/MB
b registryService=TestRMIServer2

σ= 6.6ms R2=1.00 b0=12.98 ± 0.0 ms b1=3867.08 ± 0.0 ms/MB
a registryService=TestRMIServer0

σ= 1.7ms R2=1.00 b0= 6.94 ± 0.0 ms b1=1063.75 ± 0.0 ms/MB

Constants:

experimentType RMIExp
numberOfConnections 100

port 8143
requestsPerConnection 1

network locality remote

0 1 2 3 4 5 6 7 8 9 10

x 10
4

0

100

200

300

400

500

600

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

c
b
a

0 2 4 6 8 10
0

0.1

0.2

0.3
CVs

226

Experiment 25

Variables:
a clientCachesProofs=false serverCachesProofs=false

σ=14.4ms R2=0.99 b0=468.29 ± 0.0 ms b1=6235.17 ± 0.0 ms/MB
b clientCachesProofs=true serverCachesProofs=false

σ=18.8ms R2=0.99 b0=191.27 ± 0.0 ms b1=6377.39 ± 0.0 ms/MB
c clientCachesProofs=true serverCachesProofs=true

σ= 7.1ms R2=1.00 b0=19.77 ± 0.0 ms b1=6149.06 ± 0.0 ms/MB

Constants:

experimentType RMIExp
numberOfConnections 30

port 8143
registryService TestRMIServer3

requestsPerConnection 1
network locality local

10
2

10
3

10
4

10
5

0

200

400

600

800

1000

1200

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

a
b
c

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

227

Experiment 26

Variables:
a clientCachesProofs=false serverCachesProofs=false

σ= 5.1ms R2=1.00 b0=411.43 ± 0.0 ms b1=3798.24 ± 0.0 ms/MB
b clientCachesProofs=true serverCachesProofs=false

σ= 5.5ms R2=1.00 b0=140.97 ± 0.0 ms b1=3796.35 ± 0.0 ms/MB
c clientCachesProofs=true serverCachesProofs=true

σ= 4.4ms R2=1.00 b0=16.94 ± 0.0 ms b1=3790.53 ± 0.0 ms/MB

Constants:

experimentType RMIExp
numberOfConnections 15

port 8143
registryService TestRMIServer3

requestsPerConnection 1
network locality remote

10
2

10
3

10
4

10
5

0

200

400

600

800

1000

1200

fileLengthNum (bytes)

tim
eP

er
R

eq
ue

st
 (

m
s)

a
b
c

10
2

10
3

10
4

10
5

0

0.1

0.2

0.3
CVs

228

